
DNS-based Mechanism for Policy-added Server
Selection

Toshihiko SHIMOKAWA† Norihiko YOSHIDA‡ Kazuo USHIJIMA †

† Kyushu University ‡ Nagasaki University

Abstract—

Many service providers on the Internet use multiple mir-
ror servers to cope with request congestion. Here, the prob-
lem is how to select the best server out of them.

We propose a DNS-based mechanism for server selection
with preferred policies. DNS (Domain Name System) is
used in almost all services and implementations. Therefore,
our approach is generally applicable. The mechanism con-
sists of two components. One is query preprocessor. The
other is network status observer. The network status ob-
server probes the status of network periodically. The query
preprocessor traps queries to the DNS, and selects the opti-
mal server automatically under a given policy. Some practi-
cal experiments substantiated the effectiveness of our mech-
anism.

Keywords— Internet, Server selection, Load balancing,
DNS, Name Server, Tenbin

I. Introduction

There are very many services on the Internet these days.
As the number of users has been increasing drastically, pop-
ular service providers face to request congestion. Therefore,
they need to build servers with high scalability. One ap-
proach is to prepare multiple servers, and locate these in
widely distributed area. Then, the problem moves to how
to distribute requests among these servers. Put another
way, the problem is how to select the best server out of
them. Therefore, we need a server selection mechanism.
Server selection mechanisms used currently impose

heavy tasks on users, or have less flexibility. Consequently,
we study on flexible server selection mechanism for mul-
tiple servers environment. To realize this, we introduce
“policy-added DNS server” attached to a Domain Name
System(DNS)[1][2] server. It can coordinate various server
selection policies. It works as a proxy server of DNS, and
imposes no need of modifying working DNS network.
The rest of this paper is organized as follows. Section 2

overviews the server selection mechanisms. We show our
policy-added server selection mechanism in Section 3. We
evaluate our mechanism in Section 4. Section 5 overviews
related works. Section 6 is a conclusion.

II. Server Selection

We need server selection mechanisms as mentioned
above. In this section, we clarify requirements of server se-
lection mechanisms. Then, we study about existing widely
used mechanisms.

This research was supported by the JSPS-RFTF-96P00603.

A. Requirements

We consider that there are six requirements of server
selection mechanisms.
1. Transparency to users
2. Service independency
3. Implementation independency
4. Scalability
5. Flexibility of server selection policy
6. Service provider independency

A.1 Transparency to users

Usually, users want to know only how to use a service.
They do not want to care about a server selection mech-
anism. Therefore, the mechanism has to transparent to
users.

A.2 Service independency

There are many services that will use a server selection
mechanism, for example, WWW, FTP, IRC, NTP and so
on. Therefore, the mechanism has to be independent of
services.

A.3 Implementation independency

Almost all services have multiple implementation of
server software and client software. For instance, there
are two major WWW browser implementations, Netscape
Navigator and Internet Explorer. And there are many
other implementations, lynx, mozilla, arena, and so on.
Therefore, the mechanism has to be independent of imple-
mentation.

A.4 Scalability

As mentioned in Section I, we need server selection mech-
anisms to build servers with high scalability. If it does not
have scalability, all the system cannot be scalable.

A.5 Flexibility of server selection policy

Server selection will be done under some policies. The
policy may differ to each other. Therefore, the mechanism
must have a flexibility of server selection policy.

A.6 Service provider independency

This item has relevance to the above item. Service
providers usually make a server selection policy for their
services. However, occasionally, user side network admin-
istrators can make their own policy. For instance, their
network has two uplinks to the Internet. Then, he/she
wants to distribute network traffic both two uplinks. In

such case, they make some server selection policy to imple-
ment them.
Therefore, it is desirable that server selection can per-

form both of the service provider side and user side. We
call it “service provider independency”.

B. Existing mechanisms

There are two widely used server selection mechanisms.
We estimate them about above six requirements. In this
section, we use RingServer[8] as an example. This is one of
the biggest file archive servers in Japan. It has 18 mirror
servers in widely distributed networks now.

B.1 User selection

In this mechanism, service provider gives different host-
names to their multiple servers. Then, users select
one of them by them selves. For example, each server
has its own name, core.ring.gr.jp, crl.ring.gr.jp,
toyama-ix.ring.gr.jp and so on.
In this mechanism, a user, or a client software, is assumed

to have enough knowledge to select a best server. This
assumption is unrealistic. Users may be imposed an extra
effort. This mechanism is not transparent to users.
However, it does not depend on service, implementation,

nor service provider.
It lacks scalability. Because, when service provider in-

crease their servers, users have to know about this new
server. It is very difficult to inform users about this change.
Therefore, increasing servers is difficult.
Server selection was done by each user. Therefore, it is

impossible to install some server selection policy.
We consider that biggest disadvantage of this mechanism

is user transparency. It lacks user transparency. We con-
clude that this mechanism is not appropriate.

B.2 DNS round robin

The latest DNS server has a capability of round robin
selection. If service provider register multiple IP ad-
dresses for a server, then DNS server automatically se-
lects one of them by round robin algorithm. For example,
ftp.ring.gr.jp has 18 different IP addresses. When a
user tries to use ftp.ring.gr.jp, DNS selects one of the
18 hosts.
DNS is used by client software and server software au-

tomatically. Therefore, users do not care about it. It is
transparent to service and implementation. DNS works
distributedly; therefore, it will not become a bottleneck.
However, round robin algorithm is too simple for effective

server selection. It selects one of multiple serves one by
one. If one of server resides near a client, it may select
the other one. Therefore, the client may access a faraway
server. Existing DNS server can use only the round robin
algorithm.
We consider that this mechanism has many advantages.

However, it lacks flexibility of server selection policy.

III. Policy-added Server Selection

We propose new server selection mechanism[3][4]. Our
basic idea is simple. As mentioned in Section II-B.2,
DNS has many advantages as a server selection mecha-
nism. However, it lacks flexibility of server selection policy.
Therefore we add the flexibility to DNS.
We introduce “query preprocessor” attached to existing

DNS network. Many server selection policies can integrate
into the “query preprocessor”. Therefore, our mechanism
can adopt many situations. We show these policies at Sec-
tion III-A. Our “query preprocessor” works as a proxy DNS
server. We show a detail of it at Section III-B.
“Query preprocessor” can perform server selection at

both server side and client side. Many of other server selec-
tion mechanisms can perform on server side only. There-
fore, if service providers prepare multiple servers and they
do not prepare any sophisticated server selection mecha-
nisms, users cannot enjoy these multiple servers enough.
However, at this situation, users can use “query preproces-
sor” at client side. Then, they enjoy multiple servers.
When selection is done on client side, a problem is how

to collect candidates. Because how to know which hosts
are multiplied servers is not obvious. We show the solution
at Section III-C.
Some policies use network status to evaluate candidates.

Therefore, our mechanism contains “network status ob-
server”. We show a detail of it at SectionIII-D.

A. Server selection policy

There are various policies for server selection. Any of
them can integrate into the “quer preprocessor”. For ex-
ample, we implemented, and/or will implement, below poli-
cies.

• Selects a server that have a shortest round trip time
between a client and a server.

• Selects a server that have a highest throughput.
• Selects a server that have a lowest CPU load.
• Selects a server that have shortest routing path be-
tween a client and a server.

• Selects a server by administrator’s decision.

Some of these are suitable for server side server selec-
tion, and some of these are suitable for client side server
selection.
In this paper we focus on client side server selection.

Because, there are many service providers that they pre-
pare multiple servers but they do not prepare any sophis-
ticated server selection mechanism. We consider that we
need client side server selection mechanism. For exam-
ple, round trip time or throughput between client side to
all servers can measure from client side by using ICMP
ECHO packet or HTTP GET command. Therefore, the
server selection policy that use these types of information
are suitable for client side server selection. In these poli-
cies, we take no notice of information that is hard to collect
from client side, for example CPU load of servers.

B. Separate preprocessor

Now we introduce a “query preprocessor”. An existing
DNS server contains both of the hostname database and
query processor. When it receives a request, it searches
hostname database and returns an answer.
We separate these two tasks. “Query preprocessor” not

only answers to requests, but also selects an IP address
for the hostname using some server selection policies. It
works as a proxy server, and imposes no need of modifying
working DNS network.
Clients change only one configuration. They switch to

use “query preprocessor” instead of existing DNS server.
If clients use DHCP or PPP, the DNS server should be
configured automatically. Therefore, in these cases, users
do not need to be aware of this configuration change. And,
many of other situation, network administrators configure
which DNS server client machines use. Therefore, changing
DNS server is negligible for transparency to users.

C. Collect candidates

When running “query preprocessor” on server side, col-
lecting candidates is easy work. However running on client
side, it is not easy. We have to collect candidates by some
way. Actual candidates are IP addresses of the correspond-
ing servers.
We collect candidates from DNS in the first place. There

are four cases that how multiple servers’ hostnames and IP
addresses are stored in DNS.
1. Single hostname and single IP address
2. Single hostname and multiple IP addresses
3. Multiple hostnames and single IP address
4. Multiple hostnames and multiple IP addresses
In the case 1, we can collect only one IP address and one

hostname. The only candidate is this IP address. There-
fore, we cannot perform server selecting.
In the case 2, we can collect all the multiple IP addresses

from DNS. We use these as candidates.
In the case 3, we can collect only one IP address like case

1. However, it is unusual that someone use this for load
balancing. Frequently, it is used for virtual hosting.
In the case 4, we want to collect all the multiple IP ad-

dresses. To do this, we have to collect all the hostnames
at first. However, unfortunately, there are no general way
to do so. Collecting these hostnames automatically is im-
possible. Therefore, we collect these by hand. We show a
detail in next section.

C.1 Multiple hostnames and multiple IP addresses

It is common to prepare multiple servers for load balanc-
ing. Giving them individual hostnames is not special, in
these days. There are no general way to know these host-
names automatically. We must list up these hostnames by
hand. Then, resolve these hostnames to IP addresses. We
use these IP addresses as candidates.
We use all these IP addresses as candidates to resolve all

these hostnames. “Query preprocessor” may answer an IP
address that a requested hostname does not have.

Suppose for examples that there are two IRC servers
“irc.foo.org” and “irc.bar.net”, and they are connected
each other. They provide same IRC space. The IP address
of irc.foo.org is 133.5.0.1, and irc.bar.net is 192.50.13.250.
When a user wants to connect irc.foor.org, his client soft-
ware send a request to “query preprocessor”. The request
wants to resolve irc.foo.org. The query preprocessor uses ei-
ther 133.5.0.1 or 192.50.13.250 as candidates. It can answer
192.50.13.250. Therefore, the user can connect irc.bar.net
instead of irc.foo.org. However, these two IRC servers pre-
pare same IRC space, the user can use this IRC server with
no problem.

D. Network status observer

“Query preprocessor” communicates with “network sta-
tus observer” to collect network status. The observer
probes network status periodically. There are two observa-
tion methods. One is active observation, and the other is
passive observation.

D.1 Active observation

In this method, the observer collects network status ac-
tively, for example:

• observe by probe packets
• observe by using service
The observer can send some probe packets, for example,

ICMP echo request, and measures their round trip time. It
uses the results to collect network status. In other case, it
can send some real requests, for example, HTTP GET, to
a server and measures through puts.
If a service that a client wants to use is known before-

hand, the observer can use this real service to probe. For
example, the observer may request WWW servers to trans-
fer some contents and measure its transfer time. However,
there are no general method to know the service before-
hand. Therefore, we assume a service based on a hostname
alias defined in RFC2219[6]. For example, if a client re-
quests resolving a hostname that begins with “WWW”,
then “query preprocessor” assumes that the client wants
to use WWW(http)service. Therefore, the observer can
try to use http packets to collect network status.
One of weak point of the active observation method is

that observer generates uselessly traffics. If we use real ser-
vice request, traffic and server load is not negligible. On
the other hand, probe packets, for example ICMP echo, are
often filtered out by firewalls. Then, probe packets cannot
reach servers, and the observer cannot collect network sta-
tus. While service packets are rarely filtered out, and the
observer can collect network status.

D.2 Passive observation

In this method, the observer passively observes network
status. Advantage of this method is small network over-
head. Examples of passive observation targets are listed
below.

• traffic of service
• routing information

When observing these traffic of service, we can measure
throughput between a client and a server. This measure-
ment does not need useless traffic. And it is a part of real
traffic, therefore it would be accurate information.
Routing information contains information to select a net-

work route. The observer can use this information as a
network status. For example, BGP[7] packets contain AS
path list. A observer collects all AS path length for all of
multiple servers.

IV. Consideration

A. Implementation of prototype system

We implement a prototype system. We call this “Ten-
bin1”. Tenbin contains both of the query preprocessor and
network status observer.
Query preprocessor consists of a request receiver, a pol-

icy database, a policy decider, and some policy executor.
Some of these policy executors communicate with their own
network status observer.
We describe how Tenbin works. When the request re-

ceiver receives a request from clients to resolve a hostname,
it parses the request. If it does not know a query type of the
request, Tenbin forwards the request to predefined existing
DNS server. If it know the query type, the policy decider
selects a server selecting policy for the request. The decider
selects a policy executor from the policy database using the
requested information.
The request receiver passes the request to a decided pol-

icy executor. The executor communicates with its net-
work status observer to obtain network status information
if needed. Then, policy executor selects an IP address by
his policy.
When there is no specific policy for the request, the re-

quest receiver uses a default policy. The current default
policy is that simply forwards the received request to pre-
defined existing DNS server.
Finally, the selected IP address is sent back to the re-

quester.
We use an object-oriented script language Ruby[5] for

coding Tenbin.

B. Evaluation using prototype system

We examined Tenbin’s capabilities and performance on
some networks.
We examined transition of server selection results. In

this examination, we used ftp.ring.gr.jp for server se-
lection targets. The ftp.ring.gr.jp has 14 IP addresses2,
and they locate at 14 different networks.
In this examination, our server selection policy is “short-

est round trip time”. We measured round trip time be-
tween Tenbin and 14 servers every 30 minutes by sending
ICMP ECHO packets.

1Tenbin stands for “Tenbin is Experimental Name server for load
Balanced INternet”

2We described that RingServer has 18 mirror servers in Section II-B.
However it had 14 mirror servers when we made this experimentation.

TABLE I

Selected times at Kyushu Univ.

hostname count ratio(%)
ring.nacsis.ac.jp. 1486 51.1
ring.ocn.ad.jp. 602 20.7
ring.etl.go.jp. 223 7.68
ring.aist.go.jp. 150 5.16
ring.asahi-net.or.jp. 130 4.47
ring.so-net.ne.jp. 124 4.27
ring.crl.go.jp. 74 2.54
ring.jah.ne.jp. 55 1.89
ring.shibaura-it.ac.jp. 43 1.48
ring.omp.ad.jp. 9 0.31
ring.ip-kyoto.ad.jp. 9 0.31
ring.htcn.ne.jp 1 0.03

0

20

40

60

80

100

120

140

160

R
T

T
 (

m
ill

i s
ec

.)

DATE
Sep.12 Sep.13 Sep.14 Sep.15 Sep.16 Sep.17 Sep.18 Sep.19

ring.nacsis.ac.jp

ring.ocn.ad.jp

Fig. 1. round trip times

We show the result in Table I. Tenbin selects one of 14
servers that has a shortes round trip time. This table show
the selected count of every 14 servers.
We plot transition of two RTTs in Fig.1.

B.1 Result difference by location

Next, we studied difference of selected host by location
of Tenbin. We locate Tenbin some locations. We show the
result of selected hosts at Nagasaki University(Table II),
WIDE Project FUKUOKA NOC(Table III) and WIDE
Project NEZU NOC(Table IV). These tables show only
top three hosts of selected hosts.
We see from Table I and Table II that these two results

are similar. From a network topology standpoint of view,
Kyushu University and Nagasaki University locate at same
AS(Autonomous System). We consider that this results
similarity is caused by network topology similarity.
We also see from these two tables that a tendency of

selected hosts show concentration.
From a view point of geographical location, Kyushu Uni-

versity and WIDE Project FUKUOKA NOC locate in a
same campus. However, from a network topology stand-
point of view, they are at different ASs. We see from Table
I and Table III that these two results are very different.
We consider that this results difference is caused by net-

TABLE II

Selected times at Nagasaki Univ.

hostname ratio(%)
ring.nacsis.ac.jp. 88.2
ring.ocn.ad.jp. 10.0
ring.shibaura-it.ac.jp. 0.53

TABLE III

Selected times at WIDE FUKUOKA NOC

hostname ratio(%)
ring.shibaura-it.ac.jp. 20.0
ring.asahi-net.or.jp. 16.4
ring.omp.ad.jp. 10.6
ring.ocn.ad.jp. 10.6

work topology difference.
From a view point of network topology, WIDE Project

FUKUOKA NOC and WIDE Project NEZU NOC locate
at the same AS. However, these two results show different
tendency. We think this difference comes with difference of
connectivity between other ASs.
We see from Table III that the tendency of selected hosts

does not show concentration. This comes from a change of
network topology.
For example, topology between WIDE Backbone and

NSPIXP3 3 changed on October 14. Table V is a result
of selected hosts before October 14. It shows a tendency.
These results show that Tenbin selects the nearest server

automatically. Therefore, users can use the best server
automatically.

B.2 Overheads

We examined an overhead of Tenbin. When Tenbin for-
wards a request to the existing DNS server, average over-
head time of Tenbin was 9.1 ms. We consider that this
overhead is negligible.

C. Limitation

C.1 Specific hosts

There can be a case that users or administrators want
to use a specific server out of multiple servers. Our DNS
server may select another host. There are two solutions for
this problem.
1. Use an IP address directly instead of the hostname.
It is difficult to use the IP address for ordinary users.
However, the case which users want to use a specific
server must be a special case, administrative work for
example. Therefore, this is practical.

2. Giving individual hostnames one by one. Users can
access a specific host using its specific hostname. How-
ever, if users use this specific host to receive ordinary
service, load balancing does not function.

3one of major Internet eXchange in Japan

TABLE IV

Selected times at WIDE NEZU NOC

hostname ratio(%)
ring.asahi-net.or.jp. 58.0
ring.nacsis.ac.jp. 29.1
ring.ocn.ad.jp. 12.2

TABLE V

Selected times at WIDE FUKUOKA NOC (before

1999/10/14 10:00)

hostname ratio(%)
ring.omp.ad.jp. 58.3
ring.ip-kyoto.ad.jp. 22.1
ring.htcn.ne.jp. 11.0

C.2 Selection using only hostname

To use a service, information other than hostname is re-
quired: the port number of TCP/UDP, path name of con-
tents for example. If these are different between multiplied
servers, our mechanisms is not usable.
For instance, some IRC servers provide services on mul-

tiple port for large number of clients. However, not all
servers provide such service. Therefore, we cannot make
all these IRC servers as candidates.

V. Related works

Smart Clients[9] is a one of the client side selection mech-
anism. Smart Clients use Java applet to deliver server sta-
tus to clients. This system has to modify both server and
client software. It depends on implementation.
SWEB[10] is a mixture of round robin DNS and server

side selection mechanism. In this system, server selection
was done by two steps. First step, DNS server selects a
first server by round robin. Second step, the selected first
server selects a final server out of multiple servers and redi-
rect request to the final server. This system can evaluate
server status on the first server. However, to evaluate server
status, servers have to modify to collect server status. It
depends on server implementation.
The system by Shigechika et al. [11] uses network se-

lection model. It assigns a single IP address to multiple
servers, and lets routing mechanism select an appropriate
server. It lacks flexibility of server selection policy.
The weighted round robin algorithm[12] is a simple ex-

tension of round robin DNS. It assigns multiple IP ad-
dresses to a server according to servers’ capacity. It can
evaluate servers’ capacity and its load occasionally. How-
ever, it lacks flexibility of server selection policy.
Approach of Cluster DNS[13] is similar to ours. It adds

server selection mechanism to DNS. However it, and all of
above except round robin DNS, assume that they, at least a
part of them, run on server side. Therefore, it lacks service
provider independency.
Distributed Director[14] is a product for load balancing.

It uses the applicabity gateway selection model and the

meta server selection model. It uses routing information to
select a server. It depends on router implementation.

VI. Conclusion

In this paper we clarify requirements of server selection
mechanism. Then, we propose a design for flexiblely server
selection mechanism using DNS server that embeds various
server selection policy. This system design has wide appli-
cability, and runs distributedly. We implement a prototype
system, and evaluate it.
The future direction of this study will include:
• Detailed result analysis
• Estimate using widely distributed service
• Design and implement various policy executor.
• Develop better policy selection mechanisms
Current Tenbin implements a few policy executor. We

must implement other policy executors, and evaluate these.
We plan to implement some policy executor. One use rout-
ing information. It communicate with external routing
server to obtain routing information. In the first step, we
use BGP AS path length as routing information. Current
all policy exector embed its network status observer. It
will be first network status observer that does not embed
network status observer. We have to evaluate overhead of
communication with external network status observer.
The other policy executor select highest through put

server. Its network status observer will send HTTP GET
request to candidate servers. We will compare the results
of throughput policy and round trip policy.

Acknowledgments

The authors would like to thank Prof. Hiroshi
Esaki(Tokyo University), and Mr. Ikuo Nakagawa (Intec
Web and Genome Informatics Corporation) for providing
host for running Tenbin at WIDE Project NEZU NOC. We
also thank the members of RingServer Project for helpful
discussions.

References

[1] P. Mockapetris, “DOMAIN NAMES – CONCEPTS AND FA-
CILITIES”, RFC 1034, Nov. 1987

[2] P. Mockapetris, “DOMAIN NAMES – IMPLEMENTATION
AND SPECIFICATION”, RFC 1035, Nov. 1987

[3] T. Shimokawa, N. Yoshida, K. Ushijima, “Flexible Load Bal-
ancing Mechanism using Name Server,” Internet Conference ’99,
Dec. 1999 (in Japanese)

[4] T. Shimokawa, N. Yoshida, K. Ushijima, “Flexible Server Se-
lection Using DNS,” International Workshop on Internet 2000,
Apr. 2000

[5] Y. Matsumoto, “Ruby the Object-Oriented Script Language, ”
http://www.ruby-lang.org/

[6] M. Hamilton, R. Wright, “Use of DNS Aliases for Network Ser-
vices,” RFC 2219, Oct. 1997

[7] Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BGP-4),”
RFC1771, Mar. 1995

[8] Ring Server Project, http://www.ring.gr.jp/
[9] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, D.

Culler. Using Smart Clients to Build Scalable Services., Usenix
’97.

[10] D. Andresen, T. Yang, V. Holmedahl and O. Ibarra., SWEB: To-
wards a Scalable WWW Server on MultiComputers, Proceedings
of the 10th International Parallel Processing Symposium, April,
1996.

[11] N. Shigechika, O. Nakamura, N. Sasakawa, J. Murai, “Network
and Information Providing System for Nagano Olympic” Journal

of Information Processing Society of Japan Vol.39 No.2, 1998(in
Japanese)

[12] T. Baba, S. Yamaguchi, “A DNS based implementation on
widely load balancing mechanism, ” IPSJ SIG Notes, 98-DSM-9,
pp.37-42, May 1998 (in Japanese)

[13] V. Cardellini, M. Colajanni, P.S. Yu, DNS dispatching algo-
rithms with state estimators for scalable Web-server clusters,
World Wide Web Journal, Baltzer Science, vol. 2, no. 3, July
1999, pp. 101-113.

[14] CISCO Systems Inc. DistributedDirector, http://
www.cisco.com/warp/public/cc/cisco/mkt/scale/distr/
index.shtml

