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Abstract

Large scale web caches are in fact localized sources of
web contents. Besides replacement policies, which decide
the contents of a cache, the management of such contents is
an issue of special significance to web caching. This paper
introduces our ongoing work on the research of cache con-
tent management. We propose a multicache based content
management scheme in which web contents are distributed
to several subcaches rather than maintained in a mono-
lithic priority queue. This scheme is suitable for managing
large cache space and capable of implementing sophisti-
cated control logic. The efficiency of this scheme is demon-
strated by design and implementation of a new replacement
policy. Trace-driven simulations are used to evaluate these
results.

1. Introduction

Data access from remote web sites is far more expensive
than from local sources due to the scarcity of bandwidth
resource and the inherent latency imposed by the velocity
of light. Caching is such a technique by storing the fre-
quently used data near the clients to reduce the remote ac-
cesses. Caching has been introduced into the web ever since
it began to get popular [6, 10, 16]. Extensively employed
caches can not only reduce network traffic and download-
ing latency, but can also distribute the workload from server
hot-spots [1, 2, 4, 5, 12]. Today, caching has proved a highly
successful technique to enhance the web infrastructure [9].

However, current researches on web caching are largely
constrained by the assumptions such as small cache space,
narrow time scales and limited hint information, which are
primarily valid for conventional processor caching, virtual
memory paging or database buffering [11]. As a result,
only limited properties and simple control logic are found
in cache management [1].
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Large scale web caches are in fact localized sources of
web contents rather than a heap of meaningless data as in
traditional caching. On the one hand, replacement policies
are required to decide the contents, or what to cache, to
achieve high hit rates or other performance metrics. On the
other hand, in order to make best use of such contents, it
is important to develop suitable content management strate-
gies. This is because: (1) web cache tends to be increasingly
large in size and data can be probated in cache for some long
time. So cache performance tends to be not so sensitive
to replacement policies; (2) web cache is document-based.
Semantics related to a document are important indicators
to its usage. However, in current caching framework, such
semantic information can hardly be utilized.

Content management ought to be studied at different
stages. At the first stage, content management can support
efficient implementation of sophisticated replacement poli-
cies. At the advanced stage, it is expectable to implement
cache-based web information integration, in which cache
is not just a passive tool in response to changing of access
patterns, but it may become an active environment for inte-
grating useful web information.
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Figure 1. Managing LFU contents in multiple
priority queues

In this paper, we focus on the former to explore the archi-
tectural aspect of cache content management for supporting



cache implmentation. As a motivating example, consider
LFU (Least Frequently Used), a classic cache replacement
policy always choosing the least frequently used object to
evict. To select the least recently used object, a direct way
is to maintain a monolithic priority queue based on refer-
ence times. However, the O(log(n)) time complexity is ex-
pensive to large web caches. Another scheme as illustrated
in Figure 1, implements multiple space-constrained FIFO
queues, based on different reference times. Every hit or
miss only requires a simple insertion or deletion operation
with a overhead ( O(1)). Long-term inactive objects will
enter a lower FIFO queue until being evicted. This happen
to be a substantial improvement to origin LFU because it
can reduce inactive data fixed in cache (“cache pollution”).

In this paper, we propose a multicache based content
management scheme, in which web contents are allocated
to several subcaches based on a so-called Cache Knowl-
edge Base (CKB). Each subcache manages its space and
contents independently. Semantic information can be easily
incorporated into cache management in the form of CKB
knowledge segments or as cache constraints (see Section 2
for details). We have demonstrated the significance of our
approach by developing and experimentally assessing the
content management strategy for the new caching scheme,
Size-adjusted and Popularity-aware LRU (LRU-SP).

The remainder is organized as follows: Section 2 intro-
duces the fundamentals of web cache. Section 3 describes
the multicache based content management scheme. Sec-
tion 4 contains the design of a new algorithm LRU-SP. In
Section 5, we experimentally evaluate the introduced algo-
rithms. In Section 6, we briefly review the previous work
related with content management. Section 7 concludes this
paper and describes the directions of future work.

2. Fundamentals of Web Cache

2.1. Cache Components

There exists some confusion over the definition of cache.
In this work and in the web context, we refer to a cache as an
autonomous agent, consisting of the following components
(Figure 2):

1. Space: cache space, a limited storage space for keep-
ing the selected content. No matter how large the cache
space is, in the web context, it is impossible and unnec-
essary to keep all accessed data in cache. Inactive data
or valueless data will eventually be flushed out.

2. Contents: a collection of objects chosen to stay in
cache space. Object is any file with a URL(uniform
resource locator) such as HTML documents, pictures,
and video/audio files. Metadata about the web objects
are critical information for cache management.

Space

Contents Policies

Constraints

Figure 2. Cache components

3. Policies: replacement policies dedicated to maintain-
ing the cache space and object space. A bad replace-
ment policy may be prone to cache pollution that inac-
tive objects tend to fix in cache or early eviction that
real popular objects are purged out too early.

4. Constraints: special conditions imposed on the cache.
Constraints are important because not all data can al-
ways be cached or be dropped out.

2.2. Hint Information for Cache Management

Web caching is based on whole document due to the re-
striction in HTTP protocols that support whole file transfers
only, so a cache hit only happens if entire file is in cache.
There are two categories of information are much more im-
portant in management of cache contents.

System-oriented information. Web documents vary in
size, format, retrieval cost and other physical properties.
These properties, together with data about document us-
age, such as frequency and recency of reference, are easy
to quantify and most of them have been utilized in replace-
ment policies. Other system-based properties include URL
address, links, estimated bandwidth and the forth.

Semantics-based information. Web document is a com-
plete semantic unit. since most users browse the web in a
rational way according to their needs and interest, semantic
information such as document content, user profile and ac-
cess history, could be more direct indicators to future use of
this and the related documents. However, such information
can hardly be implemented in current cache management
schemes.

2.3. Cache constraints

It is necessary to impose various restrictions on each
component of a cache and the relationships between them.
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Figure 3. The Multicache-based Content Management Scheme

For example, dynamic pages, too large documents, or ob-
jects that are prohibited from caching will not be accepted
in cache. Constraints are conditions that impose special re-
strictions to cache:

Admission constraints. Admission constraints refers to
such requirements that a newly arrived object should meet.
A new object that does not satisfy such constraints will be
rejected for caching. Admission constraints will be vali-
dated for new objects, or a cached object with new modi-
fications such as size changed. An example of admission
constraint is:

Object sizes must be within 2 MB

Freshness constraints. A cache copy must be confirmed
to be fresh enough before sending the copy to the requesters.
A document becomes stale due to modifications. If the copy
has already become stale, the cache should contact origin
site for a fresh version. For example,

Objects without TTL specification can-
not stay longer than 7 days

Miscellaneous constraints. For example

At the end of a day, to-
tal bytes in cache should not ex-
ceed 95 of total cache space.

3. Multicache-based Content Management

Since single priority queue is neither suitable for man-
aging large cache space nor good for incorporating higher

semantics information, we propose a general mulitcache
based content management scheme. As depicted in Fig-
ure 3, there are four major components: Central Router,
Cache Knowledge Base (CKB), subcaches and judge of sub-
caches. Central router plays a central role in controlling and
coordinating these components.

3.1. Cache Knowledge Base (CKB)

Cache Knowledge Base (CKB) consists of a set of rules
designed for classification of web contents. Semantics in-
formation can be used here to direct the cache. Sophis-
ticated rules involve more control logic. Based on such
rules, we can implement more advanced content manage-
ment. For example,

R1: allocate(X, blog2(s)c):-size(X, s).
R2: allocate(X, 1):-url(X, U), match(U, *.jp),

content(X, baseball), type(X, picture).

Here, R1 tells us object to keep object of a size s in subcache
blog2(s)c. R2 directs pictural document in subcache 1 if it
is about baseball and comes from Japan.

3.2. Subcaches

A subcache is an independent cache that has its own
cache space, contents, replacement policy and constraints.
Since objects in a same subcache are usually similar in some
properties, subcache can use simpler replacement policy.
For example, if classification rule is R1 as in previous ex-
ample, then objects in the same subcache have the similar



sizes. As a result, the subcache need not take size into ac-
count. For this reason, simple policies such as LRU, FIFO,
CLOCK, and SIZE are often used in this case.

3.3. Judge of Subcaches

The candidate set of evictions selected by subcaches are
to be assessed by a judge to make final decision. Compre-
hensive criteria are used in this judge process. The judg-
ments can: eviction, re-caching, or probation. An eviction
object will be purged at once. However, if an object is se-
lected to re-cache or to probate, it will remain in cache. The
distinction between re-cache and probation is: an object to
be re-cached will be cached at once in a certain subcache,
while a probation object will be held by the judge in its own
space and the final decision is expected to make in the next
turn.

3.4. Algorithm Framework of Multicache-based
Content Management

As a request comes from a client, how is it being ser-
viced? The algorithm is as described in Figure 4: At first,
it is looked for in a in-cache index to see whether or not
it has been cached. For a cache miss, the request will be
forwarded to the origin server, then the downloaded docu-
ment is returned to client. For a hit, the document will be
returned to client if the freshness constraints are validated.
Otherwise, a conditional HTTP GET request will be sent to
origin server to see if the cached copy is fresh.

The Central Router is responsible for mediating sub-
caches to work together: a document may be cached in sev-
eral different subcaches in terms of its states evaluated by
CKB-driven classification.

4. Content Management in LRU-SP

To demonstrate the feasibility of the ongoing discussed
approach, we will consider a new caching scheme. Since it
is built on an existing LRU extension, Size-Adjusted LRU,
we will begin with a review of it.

4.1. Review of Size-Adjusted LRU

Size-Adjusted LRU (SLRU) is a generalized LRU re-
placement algorithm, proposed by Charu Aggarwal et al in a
recent paper [2]. To select a victim when there is no enough
space for a new object, objects in cache are indexed in order
of nondecreasing values of Si ��it:

S1 ��1t � S2 ��2t � � � � � Sk ��kt

Algorithm
Central Touter services each request ;
Suppose current request is for document p;
(1) Locating p by In-cache Index;
(2) If p is not in cache, download p;

1) Validate Constraints, if false, loop;
2) Fire rules in CKB, let subcache ID = K;
3) While no enough space in subcache K for p

Subcache K selects an eviction ;
If space sharing, other subcaches do same;
Judge assesses the eviction candidates;
Purge the victim; end While

4) Cache p in subcache K
(3) If p is in subcache , do 1) - 4) re-cache p .

Figure 4. Algorithm Framework of Multicache
Based Content Management

(where k is the total number of objects in cache). The high-
est index objects are greedily picked one by one and purged
from the cache until sufficient space being made.

The content management scheme for SLRU is called
Pyramidal Selection Scheme (PSS), in which objects are
classified into a limited number of groups based on
blog2(size)c, so that objects within a same group are simi-
lar in sizes. Each group is maintained using a LRU mecha-
nism. The basic Size-Adjusted LRU policy only applies to a
limited set of least recently used objects from all nonempty
groups to make final decision. The object with largest
(Si ��Tit) will be purged from the cache.

The major problem with Size-Adjusted LRU is its igno-
rance of long-term popularity and the strong bias towards
small objects. Larger objects can hardly compete with
smaller ones for surviving in cache, no matter how popular
is really being. For example, if requests occur periodically
(Figure 5(a)) and each subsequent request occurs before the
object ages out, it will stay in the cache. However, if ac-
cesses are locally concentrated, the object may have aged
out from cache before it gets the next access (Figure 5(b))
even if the average occurrence is the same as the previous
case.

4.2. LRU-SP: Incorporating Frequency in Size-
Adjusted LRU

To differentiate popularities, it is necessary to incorpo-
rate one more property, i.e. frequency of reference. We use
an accumulative cost-to-size ratio to handle frequency, that
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is to say, accumulating the cost-to-size ratio every time an
object gets a new access. Given nrefi is the access times
since it being cached, then

(nrefi=(Si ��Tit))

In practice, the objects are indexed in order of nonde-
creasing values of Si��it

nrefi
:

S1 ��1t

nref1
�

S2 ��2t

nref2
� � � � �

Sk ��kt

nrefk

(where k is the total number of objects in cache) then the
highest index objects are greedily picked one by one and
purged from the cache until sufficient space being made. We
call the policy Size-adjusted and Popularity-aware LRU, or
LRU-SP.

Based on this benefit-to-cost model, the influence of re-
references is accumulated (represented by sum) so that the
objects with more references can stay more time before be-
ing driven out. Figure 6(a) and Figure 6(b) show the cases.

1

1 2 3 4 5

2 3 4 5

0

0

sum

sum

nref

(a)

 (b)

Figure 6. Popular Objects Remain In Cache

4.3. Content Management for LRU-SP

Based on the previous discussion, we devise the follow-
ing content management scheme for LRU-SP:

1. Subcaches: objects are classified into several sub-
cahes on the basis of blog2(Si=nrefi)c instead of
blog2(Si)c. In ohter words, the cache knowledge base
contains a classification rule
R1: allocate(X, blog2(s)c):-size(X, s).

2. Each subcache uses an LRU policy.

3. A hit may make the requested object move to
new LRU subcache dependent on its new value of
blog2(Si=nrefi)c;

4. The judge of subcaches chooses a victim with largest
(�Tit � Si=nrefi) from the candidate evictions based
on the new cost-to-size model.

Intuitively, an object with more accesses has been treated
as a smaller one (Si=nrefi), which, to some degree, awards
the popular object to become competitive with less popular
but small objects. The number of subcaches is reasonable
to be no larger than 20, because the objects larger than 1MB
(220B) are quite rare.

Maintaining a LRU queue just requires a tail inser-
tion/head taking and incurs no overhead and choosing the
final victim only needs constant times (less than 20) of com-
parisons. In all, the overhead of this scheme is indepen-
dent of the scales of object space and cache space, in other
words, it is O(1) in any cases. Further, LRU-SP has no
space boundaries for LRU queues, so it is a parameter-free.

5. Performance Evaluation

5.1. Data Collections

We have two datasets to be used in driving our
caching simulator. The dataset NLANR in Table 1 is a
one-week top level caching proxy traces publicly avail-
able (ftp://ircache.nlanr.net/Traces/). This dataset contains
1,848,319 requests with total 21.0 GB Web data, where
unique data is 15.9 GB with a maximum hit rate 0.228 and
byte hit rate 0.245. The KAMB dataset is collected from the
logfiles of the Squid proxy server in our laboratory. It con-
tains 873,824 requests with total 23.6 GB Web data, where
unique data is 21.3 GB with a maximum hit rate 0.251 and
byte hit rate 0.098. This low byte hit rate indicates popular
objects concentrate in smaller objects.



Dataset Duration Total Requests Total Bytes Unique Bytes HRmax BHRmax

KAMB one month 873,824 23.6 GB 21.3 GB 0.251 0.098
NLANR one week 1,848,319 21.0 GB 15.9 GB 0.228 0.245

Table 1. Profiles of Trace Datasets
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Popularity vs. Access Frequency

We first analyze the relationship between access frequency
and the probability of next access. The topmost plot of Fig-
ure 7 depicts how probable an object gets one more refer-
ence given it has got i accesses. Dj=Di means when an
object already has i references, how probable it will get
j0s reference. With the increment of i, Di+1=Di goes up
quickly. This indicates that the more frequently an object
have been accessed, the more possible it will re-accessed in
the future. Di+1=Di jumps steeply at first few points un-
til 8-10, which implies no need to consider frequency if is
exceed a small threshold.

Access Times vs. Object Sizes

The distribution of sizes also appears similar locality: the
objects below a small threshold, say 10KB, get quite a ma-
jority of accesses as depicted in Figure 8.

5.2. Caching Schemes for Evaluation

Apart from LRU-SP and Size-Adjusted LRU, the other
two caching schemes we choose to evaluate are Segmented
LRU and Least Recently Value (LRV).

Segmented LRU is a frequency-based extension of ba-
sic LRU [8], where objects with different access frequency
are maintained in different partitions or segments of cache
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Figure 8. Accumulative Size Distribution

space. Since Segmented LRU was especially designed for
disk caching, it did not take into account variable object
sizes. In addition, to compare with other schemes, we ex-
tend the basic Segmented LRU by partitioning cache space
into more segments than only 2 in basic Segmented.

Least Recently Value (LRV) is a new caching scheme es-
pecially designed for Web caching [13]. The designers have
developed an elaborate function to handle various charac-
teristics of Web objects. An efficient content management
scheme is given to LRV, which also classifies objects into
a few groups according to their access frequency. Objects
in the first group are maintained using a unit caching policy
SIZE, whereas the rest groups are FIFO lists. Final deci-
sions are made by a central cache which is based on LRV-
function.

5.3. Simulation Results

We have carried out simulations on both trace datasets
of NLANR and KAMB. In addition to evaluation of LRU-
SP and its predecessors Size-Adjusted LRU and Seg-
mented LRU, we also compare them to Least Relative Value
(LRV) [13], a well-know replacement algorithm, which also
takes object sizes, recency and frequency of reference into
account. LRV is based on extensive Web workload analyses
and an elaborate cache design.
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Outperforming Segmented LRU

LRU-SP achieves much higher hit rates than Segmented
LRU under two datasets, (Figure 9 and 11). However,
LRU-SP performes almost as well as Segmented LRU in
terms of byte hit rates.

This is because Segmented LRU cares nothing about ob-
ject sizes, thus quite a number of smaller objects are dis-
placed by bigger objects. Whereas LRU-SP balances well
between object sizes and popularity, so it preserves a large
number of smaller and popular objects in cache, which
guarantees high hit rate but no harm to byte hit rates.

Outperforming Size-Adjusted LRU

LRU-SP significantly improves Size-Adjusted LRU in byte
hit rate under dataset NLANR (Figure 10) without loss of
hit rate. This result is not so good under dataset KAMB be-
cause the access pattern of KAMB biases towards so many
small objects that the strategy of awarding bigger yet popu-
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Figure 11. Hit Rates under KAMB Dataset
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lar objects became not so effective.

LRU-SP performing better than Size-Adjusted LRU
demonstrates that LRU-SP has really retained bigger ob-
jects that are popular enough to make up the loss of cache
space.

Outperforming Least Relative Value

LRU-SP also outperforms LRV in most cases, especially in
terms of hit rate. The reason is the pure LRV is unrealistic
to implement. The simplified implementation of LRV given
by its designers only differentiates object sizes in its first
queue (for objects with only one access). While in LRU-SP,
objects with different sizes are distributed among several
LRU queues. So LRU-SP makes better advantage of infor-
mation about sizes than LRV. Consequently, LRU-SP can
achieve higher hit rates than LRV.



6. Related Work

This work is based on extensive studies on various
caching schemes. There are quite a number of specific con-
tent management schemes for supporting implementation of
high performance low overhead cache replacement policies,
especially in the research of operating systems and database
systems. For example, Segmented FIFO in [17]; FBR in
[14]; Segmented LRU in [8]; 2Q in [7]. Ozalp Babaoglu
et al in [3] analyzed a family of two-level content manage-
ment schemes. Performance models are developed to mea-
sure these them.

In Web caching, most caching schemes have a content
management scheme to support efficient implementation.
Least Relative Value (LRV) proposed by Luigi et al [13] uses
10 FIFO queues and a SIZE priority queue to management
cache documents. Only several eviction candidates are eval-
uated by pure LRV. LNC-R-W3-U by Shim et al. [15] is
a caching scheme that combines cache replacement policy
and cache consistency policy in a unified algorithm. The
content management scheme in LNC-R-W3-U uses K pri-
ority lists, each list with different reference times. The pri-
ority queue is based on the calculation of profits.

However, compared to these ad hoc schemes, the signif-
icant improvement of our scheme is that the object classi-
fication is rule-based so that various semantics information
can be used.

7. Conclusion and Future Work

Owing to the increasingly large space and datasets, con-
tent management has special importance to Web caching.
In this paper, we have proposed a multicache-based scheme
for content management to facilitate the design of efficient
implementation of sophisticated replacement policies. We
have demonstrated the efficiency by design and implemen-
tation of LRU-SP, a new efficient caching policy for Web
caching.

As we have mentioned in Section 1, in the advanced
stage of our content management scheme, more semantics
information and control logic will be utilized to implement
cache-based web information integration. To do this, we
will first focus on the management of cache knowledge base
(CKB).
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