
Advanced Replacement Policies for WWW Caching?

Kai Cheng and Yahiko Kambayashi

Graduate School of Informatics, Kyoto University
Sakyo, Kyoto 606-8501, Japan

fchengk, yahikog@isse.kuis.kyoto-u.ac.jp

Abstract. WWW caching necessitates advanced replacement policies that in-
clude sophisticated control logic and efficient contents management. This paper
presents a constructive approach for the design and analysis of such advanced
policies. Based on this approach, we develop a new caching policy, namely, PSS-
W. Trace-driven simulations show PSS-W outperforms most contemporary poli-
cies in both hit rates and byte hit rates.

1 Introduction

Employing caches in the World Wide Web has been proven to be an effective approach
to alleviating performance bottlenecks of web access [1]. Key to the effectiveness is
how to decide and manage a suitable subset of requested data so as to maximize the
hit ratio and other performance metrics. Strategies for this purpose, known as cache
replacement policies, have been a focus of research for decades in paging scenarios[5].

However, due to the protocol restriction, WWW caching (web caching) has to deal
with whole documents instead of data blocks. Web documents vary in sizes, costs, file
types and sources. To cope with such complications, it is necessary to employ sophisti-
cated control logic and special performance metrics. Furthermore, web caching is fea-
tured by large storage space, which, on the one hand, implies documents can be ”pro-
bated” in cache for some long time, but on the other hand, it also means high overhead
in maintaining large number of documents. The management of cache contents plays
an important role in replacement policies of web caching.

In this paper, we propose a constructive approach for design and analysis of ad-
vanced replacement policies. According to this approach, an advanced replacement pol-
icy is constructed from several simple ones. The resulted policy is parameter-less, low
overhead, able to deal with comprehensive factors and implement sophisticated control
logic. Based on this framework, we develop a new replacement policy, namely Pyrami-
dal Selection Scheme with aWard (PSS-W). Trace-driven simulations show that PSS-W
outperforms most other algorithms in both hit rate and byte hit rate.

2 Related Work

Replacement policies for WWW caching have been extensively investigated in recent
years. Charu Aggarwal et al in a recent paper [2] have surveyed and suggested classify-
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ing current replacement schemes for the Web into three categories: direct extensions of
traditional policies, key-based policies and function-based policies.

However, the key-based policies are too simple and the priority between sub-keys
is not always ideal [8]. On the contrary, the function-based policies are too complicated
and often suffer from heavy parameterization and high overhead. In practice, most well-
known caching schemes turn out to be some hybrid ones where simple policies are
organized to manage a segmented cache space. Size-Adjusted LRU is constructed from
LRU and SIZE [2]; Least Relative Value (LRV) is an integration of SIZE, LFU and
FIFO [7]; and the algorithm given by Pitkow and Recker is constructed from SIZE and
LRU where the time since last access is rounded to days [6]. However, the constructions
of these policies are mostly based on personal experiences. It is hard to tell what are the
substantial differences between them.

3 Constructed Replacement Policies

A cache can be characterized as a software agent that consists of a finite storage space
(cache space), a set of objects (object space), a replacement policy and a set of con-
straints. Replacement policy determines the contents and how to manage the contents
of the cache. Constraints are additional conditions that a cache has to satisfy. We distin-
guish three classes of constraints: admission constraints, consistency constraints, and
miscellaneous constraints such as comfortable level of cache space.

3.1 Framework of Constructed Replacement Policies

As described previously, the diversity of web documents and large scale of cache space
complicate the design of new replacement policies. Thus, we propose a constructive ap-
proach to design and analysis of advanced replacement policies. As depicted in Fig. 1,
an advanced policy is constructed from several simple policies with (1) a set of classi-
fication rules; (2) few unit caches and (3) a central cache

Classification rules

Classification rules are based to allocate objects and space among all unit caches. An
object can belong to only one unit cache at a specific time. The classification rule may
be a simple function, or a sophisticated set of logic rules. For example

1. If object X has a specific size, then cache X in unit blog2(size)c
2. If object X is from Japan and content is about baseball, and its type is picture and

size is bigger than 24KB, then keep X in unit 1

Unit caches

A unit cache is an independent cache that has its own object space, cache space, caching
policy and constraints. Which unit an object belongs to is determined by classification
rules. Thus, unit cache can use simpler caching policy. For example, if classification rule
is rule 1 as in previous example, then objects in the same unit cache have the similar
sizes. As a result, the unit cache need not take size into account. For this reason, simple
policies such as LRU, FIFO, and SIZE [8] are often used in this case.
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Fig. 1. Framework of constructed replacement policies

Table 1. Comparison of Various Constructive Policies

Algorithm Rules U Unit Caches Central Cache Factors
Segmented LRU nref 2 LRU Re-cache in D i�1 atime, nref�

Size-Adjusted LRU blog2(size)c 24 LRU max(size � atime) atime, size�

Least Relative Value nref 10 SIZE, FIFO max(lrv) atime, nref�, size
Pitkow/Recker day(atime) 7 SIZE, LRU max(day(atime)) atime�, size

PSS-W blog2( size

nref
)c 24 LRU max( size�atime

nref
) atime, nref�, size�

Central cache

A central cache manages the candidate evictions of unit caches and makes final de-
cision. Central cache may be without its own cache space and since there are only a
limited number of eviction candidates, the central caching policy can be very elaborate,
with many factors in consideration. The caching decisions have several types: eviction,
re-cache, and probation.

An eviction object will be purged at once. However, if an object is selected to re-
cache or to probate, it will remain in cache. The distinction between re-cache and pro-
bation is: an object to be re-cached will be cached at once in a certain unit cache, while
a probation object will be held by central cache in its own cache space and the final
decision is expected to make in the next turn.

3.2 Analysis of Existing Caching Policies

From the constructive point of view, we analyze the caching policies surveyed in Sec-
tion 2. Results are listed in Table 1, where nref represents the reference frequency of
an object, size is the object size and atime is the elapsed time since the object’s last
access.
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Segmented LRU

Segmented LRU [4] use a classification rule based on reference frequency (nref). This
is because objects with at least two accesses are for more popular than those with only
one access. Cache space is partitioned to two segments: probationary segment and the
protected segment. Objects with at least two accesses are kept in the protected segment,
while new objects (with only one access) are first faulted into the probationary segment.
When a probationary object gets one more reference, it will change to the protected
segment.

Both unit caches are managed as LRU queues. When the whole cache space be-
comes full, the least recently used object in the probationary segment will first be re-
placed. The protected segment is finite in size and when it gets full, the overflowed will
be re-cached in probationary segment.

Size-Adjusted LRU [2]

The Size-Adjusted LRU chooses a victim by sorting all objects in cache in terms of the
cost-to-size ratio, 1=(size�atime). It then greedily discards those with least cost-to-size
ratios from the cache. Size-Adjusted LRU uses a pyramidal selection scheme (PSS) to
manage cache space and object space.

The classification rules is based on blog2(size)c, that is to say, objects within a
same group are similar in sizes. Each group is maintained using a LRU mechanism.
Though a hit will make the object move to the most recently used end, but an object
can not move to another group. The computation of 1=(size � atime) is done only to a
limited set of least recently used objects from all nonempty groups and the object with
largest (size � atime) will be purged from the cache.

4 Pyramidal Selection Scheme with award (PSS-W)

Object size has been considered as one of the most important features of web caching [3,
7]. Reference frequency is a strong indicator to the overtime popularity of web ob-
jects [7]. However, Segmented LRU takes advantage of the popularity information but
fail to distinguish object sizes (size); whereas Size-Adjusted LRU generalizes LRU to
handle variable sizes but fails to utilize reference frequency (nref).

We extend the cost-to-size ratio in Size-Adjusted LRU by incorporating frequency
(nref). Sine each hit will reasonably increase the cost savings, we use ratio of (nref=atime)
to size and choose the object with minimum value of (nref=(size � atime)). Based on
this benefit-to-cost ratio, objects with more references are given larger benefit-to-cost
ratio and can stay more time before aged out.

Now we can construct this new replacement policy. First, to simplify unit cache,
the classification rule is chosen to be blog

2
(size=nref)c. Since, nref changes with

each hit, when blog
2
(size=nref )c changed, an object may move to another unit cache.

Compared to Size-Adjusted LRU, the size=nref results in a small value in adjusting
LRU choice and long stay in cache for an object with larger nref . For this reason, we
call the new policy Pyramidal Selection Scheme with aWard (PSS-W).
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Each unit cache is managed using a LRU policy. The (nref=(size � atime)) is
computed for the eviction candidates from all nonempty groups, purging the object
with least (nref=(size � atime)). The number of units is 24, because the objects larger
than 16MB(224B) are very rare.

5 Performance Evaluation

Through trace-driven simulations, we evaluate the replacement polices listed in Table 1.
The dataset used in our experiments is a one-week top level caching proxy traces pub-
licly available (ftp://ircache.nlanr.net/Traces/). This dataset contains 1,848,319 requests
with total 21.0 GB Web data, where unique data is 15.9 GB with a maximum hit rate
0.228 and byte hit rate 0.245.

The candidate replacement policies to be evaluated are LRV (Least Relative Value),
SLRU (Segmented LRU), Pitkow(Pitkow/Recker algorithm) together with PSS-W. The
results shown in Fig. 2. Plots in the left side depict the hit rates. The hit rate of PSS-W
is much better than the rest. Plots in the right size are byte hit rates. PSS-W can achieve
quite high byte hit rate.

Furthermore, the time complexity of PSS-W in servicing each request is a small
constant in maintaining LRU queues and computing and comparing cost-to-size ratios.
Thus, PSS-W is an ideal replacement policy for web caching.
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Fig. 2. Hit Rates and Byte Hit rates of various policies
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6 Conclusion and Future Work

To cope with the complications in design and analysis of advanced replacement policies
for web caching, we have proposed a constructive framework. This framework has been
proven helpful in analysis of various current policies, and useful in making the design
of PSS-W, a new efficient caching policy for Web caching. However, this framework
has several aspects to be completed or improved. One of our future works is to study
advanced classification rules since classification rules play a key role in construction of
an advanced policies.
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