
Using Database Technology to Improve Performance of
Web Proxy Servers

Kai Cheng, Yahiko Kambayashi
Department of Social Informatics

Graduate School of Informatics, Kyoto University
Sakyo Kyoto 606-8501, Japan

fchengk, yahikog@kuis.kyoto-u.ac.jp

Mukesh Mohania
Department of Computer Science

Western Michigan University
Kalamazoo, MI 49008, U.S.A.

mohania@cs.wmich.edu

ABSTRACT
In this paper, we propose to use database technology to improve
performance of web proxy servers. We view the cache at a proxy
server as a web warehouse with data organized in a hierarchical
model, similar to data organization in database systems. The hier-
archical model consists of physical pages, logical pages and topics,
corresponding to different abstraction level. Based on this model,
we then develop searching and topic navigation facilities for easily
finding relevant contents in cache. By defining priorities on each
abstraction level, the cache manager can make replacement deci-
sions hierarchically based on the topics, logical pages and physi-
cal pages. As a result, the cache can always keep the most rele-
vant, popular and high quality contents. We verify the proposed
approach by developing a content-aware caching scheme, namely
LRU-SP+. We evaluate our scheme in terms of hit ratio (HR) and
profit ratio (PR) which differentiate topics of different pages. The
results show that LRU-SP+ generally performs 30% better than a
content-blind scheme.

Keywords
Database, proxy server, web caching, performance, text categoriza-
tion

1. INTRODUCTION
A proxy server is a special hypertext server that acts as an inter-
mediary between web servers and clients, providing access to the
web for people who can only access the Internet through a firewall
[9]. While caching has been extensively used to improve perfor-
mance of web proxy servers, state-of-the-art caching schemes do
not perform so well as desired, with a upper bound of 30%-50% in
hit ratios [1]. This is partially because most web clients also have
local caches which absorb most shortly recurring accesses. It is rea-
sonable to have proxy servers primarily to cache longterm popular
contents instead of temporarily popular ones. Longterm popular
contents should then be made explicitly accessible like a large web
warehouse to maximize the utilization. This has been beyond the
capability of the state-of-the-art caching schemes where all web
documents are treated uniformly as physical pages with contents
transparent to users as well as cache manager. Basically, users’ ac-
cess patterns are independent of whether there is a cache and what
are currently available in the cache.

Although there is plenty of work done in last few years to improve
caching schemes, only few of them have considered the utilization

WebDB ’2001, 2001 ACM SIGMOD Workshop on the Web and Databases,
Santa Barbara, CA

of semantic information explicitly for management of web data.
A. Bestavros et al [3] suggested using more application-level in-
formation including document content in cache management, but
they failed to realize this. [11] discussed several parameters that
should influence the probability of re-accesses, including docu-
ment’s source, client requesting the document, file type etc. The
authors presented LRV (least relative value) based on an elaborate
benefit/cost function of access recency, frequency and document
size. A difficult task for LRV is to estimate the probability of ac-
cessing documents that have been accessed only once, which repre-
sent nearly 60% of residents in cache. They adopt a document size
based scheme to decide the probability of re-access when an object
have been accessed for the first time. [13] proposed a unified al-
gorithm LNC-R-W3-U, which combines cache replacement policy
and cache consistency policy. LNC-R-W3-U is based on LRU-K
[10], an extension to LRU (Least Recently Used) caching policy
where the cache decision is based on last K accesses, in contrast
with LRU, which cares only last one access.

We have noticed the importance of exploiting semantic informa-
tion and user preferences for cache management. In [4], we have
proposed a constructive approach for design and analysis of ad-
vanced cache replacement policies, in which a cache agent consists
of a central cache and multiple unit caches. Contents of a web
cache are managed in different unit caches according to classifica-
tion rules, a certain logical rules possibly based on semantics of
documents. For example, if a document D is from Japan and the
content is about baseball, the type is picture and the size is big-
ger than 24KB, then keep D in unit #u. In [6], we discussed for
the first time the issue of content management for web caching,
and proposed a multicache-based architecture to meet this needs.
Despite these efforts, however, the semantic information in these
schemes only plays a minor role, since only classification rules use
semantic information while neither central caches or unit caches
(or subcaches) are virtually content-blind. All this previous work,
however, stimulated us to explore more advanced, database-like ap-
proach for content management and cache enhancement.

In this paper, we present a new scheme for proxy caching that em-
powers users and cache manager with content-aware capability.
First, based on database technologies, we develop a hierarchical
model for web data. We then develop searching and topic navi-
gation facilities for users to quickly find what they usually would
not be aware so as to keep the users informed of fresh information
in cache. Furthermore, by defining priorities over topics, logical
pages and physical pages respectively, the cache manager can make
replacement decisions hierarchically based on the topics, logical

T2T1

A B C

a b c d e f g h i

Physical Pages

Logical Pages

Topics

Figure 1: Hierarchical model for web data

pages and physical pages. As a result, the cache can always keep
the most valuable, popular as well as fresh contents. We verify
the latter by developing a content-aware caching scheme, namely
LRU-SP+. We evaluate our scheme in terms of hit ratio (HR) and
profit ratio (PR) by taking into account the differences in popularity
of the topics of a page. The results show that LRU-SP+ generally
performs 30% better than the content-blind scheme.

The organization of this paper is as follows. In Section 2, we de-
scribe a hierarchical model for web data and the corresponding sys-
tem architecture to facilitate content management for proxy caches.
In section 3, we develop methods to enable searching and navigat-
ing the cache space. Section 4 presents a content-aware replace-
ment algorithm, LRU-SP+. Section 5 discusses and experimentally
evaluate the performance of LRU-SP+.

2. A HIERARCHICAL MODEL FOR WEB
DATA

In this section, we introduce a hierarchical model for web data to
facilitate content-aware cache management and content utilization.
On the one hand, to facilitate cache management, it should be easy
to locate the topics that a document is most relevant to and to de-
cide the popularity of them. From the point of view of content
utilization, it is desirable to organize the web data in terms of top-
ics or categories. In addition, hyperlinks are precious information
for determining the information structure. Many documents might
be of no use if some linked documents lost. The data model for
content-aware caching is based on a hierarchical structure that sup-
ports different abstraction level of web data.

2.1 The Hierarchical Structure of Web Data
Figure 1 shows the hierarchical structure of web data, where phys-
ical pages are organized to be logical pages, logical pages are then
classified into topics. The three levels of abstraction are described
as follows:

1. Physical Page, single physical file, which can be either a
HTML document or an embedded media file (Figure 1). All
web caching policies so far developed deal with physical
pages (often called web objects)

2. Logical Page, a set of physical pages with one main page and
several directly linked/embedded physical pages. A HTML

physical page together with its all embedded media compo-
nents form a logical page. Logical page is suitable informa-
tion unit for searching and classifying.

3. Topic, a set of logical pages relevant to a given topic. Logical
pages are categorized in terms of various features of them
such as keywords, home server, language and etc.

When physical pages were retrieved, a logical page generator is
called to generate one or more logical pages if there are any. Then a
classifier is used to determine which category a logical page should
belong to. Conversely, to purge a document from the cache, a can-
didate topic must be selected at first, then a logical page in this
topic, and finally one or more physical pages within this logical
page will sequentially chosen. The content-aware cache manage-
ment scheme to be developed later in this paper is built upon the
two basic operations described above, in addition with definition of
priority orders or replacement policies for all abstraction levels.

2.2 An Hierarchical Architecture for Imple-
mentation

The data abstraction and management lead to a hierarchical system
architecture as shown in Figure 2. There are three managers respon-
sible for managing the aforementioned three-level web data: phys-
ical page manager (PPM), logical page manager(LPM) and topic
manager(TPM) respectively.

Physical page manager (PPM) acts as a simple cache manager, ser-
vicing the incoming requests, maintains the cached physical docu-
ments by a priority queue. At the lowest level, such management is
restricted or supervised by LPM and TPM.

Logical page manager (LPM) is responsible for generating and
maintaining the set of logical pages. Links are important meta-
data for hypermedia documents. Logical page generator analyzes
the link structure for a set of linked documents, grouping those with
close linkage into a logical page. Another task of LPM is to main-
tain logical pages, defining priority among different logical pages
for cache replacement. The policy for logical page replacements is
based on the reference history, as well as the relevance between the
page and the topic cluster.

Topic manager (TPM) is at the highest abstract level that classifies
logical pages into given topics, managing the priority between top-
ics for cache replacement, and providing a directory of cache con-
tent for people to navigate. When it is necessary to replace some
documents to make space for more potential ones, the replacement
begin with choosing a topic that is least popular /important among
all others.

3. ACTIVE ACCESS TO CACHE CONTENTS
Large proxy cache is a repository of web contents that not only
costs much time and network resource to download them but also
takes time and work for users to discover them. However, due to the
content-transparency tradition of buffering paradigm, the content of
cached web documents has not yet been well utilized. On the one
hand, performance of caching can hardly be significantly improved
due to the steady increase of storage capacity. On the other hand, a
majority, above 60%, of web data are generally stored and replaced
without any use, leading to a heavy waste of system-information
resources. In this section, we describe the content-aware support
for users to actively make use of the most valuable resources that

Search

Mapping

Physical Pages Manager

Logical Pages Manager

Topic Manager

Mapping

http, ftp, etc.

World Wide Web

I/O

Navigate

Browse

Figure 2: The hierarchical architecture for proxy caches
that support bi-directional content-awareness: cache knows
whether a document belongs to popular/important topics, users
know what are available locally in cache

are locally available from the cache storage. We provide two fa-
cilities to this end: search engine and content directory based on
up-to-date indexes.

3.1 Indexing of Cache Content
The TF/IDF (term frequency/inverse document frequency) is the
most widely used weighting scheme used for indexing documents
in information retrieval systems. In this scheme the weight of each
term is computed and then the documents are indexed based on
weights of these terms. Suppose t denotes the term (i.e. keyword
and/or phrase), d denotes a document, N denotes the total number
of documents, TFt;d (term frequency) denotes the occurrence of
term t in document d, and DFt (document frequency) denotes the
number of documents that contains term t. The inverse document
frequency IDFt for term t and wt;d, the weight of term t in docu-
ment d, are defined as:

wt;d = TFt;d � IDFt; IDFt = log(N=DFt) + 1 (1)

As we can see this indexing method uses syntactical information
rather than semantics of documents. For example, if a document
is not in a proper order or it is a meaningless but it has all the
terms, this document may be scored high. This can be avoided if
the information about the credibility of documents is also included
while computing the weights of terms.

Let keyword vector

q = ((t1; w1); (t2; w2); � � � ; (tk; wk))

represents the information needs of a user, where, t i and wi (i =
1; 2; � � � ; k) are keyword and importance of the keyword respec-
tively. wi 2 f1; 2; 3g. Given q and document d, and w ti;d is the
TF/IDF weight for keyword ti in document d as defined in formula
1, we use cosine vector similarity formula to compute the semantic
distance (i.e. similarity) [12].

similarity(d; q) =

Pk

i=1(wi �wti;d)qPk

i=1
(wi)2 �

Pk

i=1
(wti;d)

2

(2)

We extend the basic scoring scheme by considering the popularity
of a web document. The popularity of a document can be judged
by determining the reliability (i.e. credibility) of web document,

how many other documents create link to this document, and how
often it is accessed. We refine the above formula as:

score(d; q; RFd) = similarity(d; q) � e�(RFd�1) (3)

where RFd is reference frequency of documentd. � is a parameter
and its value lies between 0 and 1, both inclusive. User can set � to
adjust the impact of reference frequency. In case� = 0, it becomes
the naive form similarity scoring. From (3), we can see, the weight
of a document increases with RFd. In case that RFd = 1, we get

socre(d; q; RFd) = similarity(d; q);

score(d; q; RFd) simply measures the relevance of document d
to query q. However, when the document is proved popular and
valuable (RFd > 1), it becomes increasingly worth to recommend
to the users, so socre(d; q; RFd) � similarity(d; q).

D D2 D3

E4

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

1

Topics

5E3E2E

Candidates for Replacing

��
��
��

��
��
��

1E

C

(Main)

(Embeded)
Physical Pages

Physical Pages

Logical Pages

A

��
��
��
��

��
��
��
��

B

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

Figure 3: Cache replacements from topics down towards phys-
ical pages

3.2 Keyword-Based Searching
Searching is a means to make users aware of relevant contents in
cache that are found and retrieved by other like-minded people.
Searching as a new function improves the utilization of cached
web contents while facilitating information sharing among differ-
ent users.Two kinds of searching are supported to facilitate retrieval
of information satisfying different needs of users.

Persistent searching is provided for filtering web documents that
a user has persistent interest, for example, a researcher may have
long-term interests in new documents on her/his research topic.
Persistent searching is a continuous process to filter new documents
for a specific user based on her/his user profile. A user profile is a
vector of keywords (with weightings) representing the user’s infor-
mation needs or interests,

p = (�; Æ; notification; url; email; � � � ; q)

where q = ((t1; w1); (t2; w2); � � � ; (tk; wk) represents user’s
information needs; � is a threshold for deciding whether a new
document is close enough to be selected. Æ is the time interval the
automatic searching will be performed. notification is used to
specify whether and how to notify the user of the search results, it
is a combination of one or more options from

fnone; normal; when�updated; only�fresh;
only�top�N; by�mailg

url is the location to keep the search results and All document d
with score(d; q; RFd) > � will be returned. Both � and Æ are
configurable parameters. For, when one wish the search result be
updated on a daily basis, s/he can set Æ = 24 (hours).

Ad hoc searching is supported for casually searching the content
of cache. An agent is employed to mediate the search: if there are
no enough results returned from proxy cache, the agent will choose
a suitable search engine to carry out the search, depending on the
type of query user issued.

4. CONTENT-AWARE CACHING
Based on the hierarchical data model for content-aware cache, in
this section, we present the content-aware cache management scheme.
The basic idea is to make replacement decisions beginning with
choosing a topic with least priority, then down toward the lower
level decisions. We will first describe this multi-layered cache re-
placement policies in general. Then, we give a concrete algorithm,
namely, LRU-SP+, which has been proved a successful cache scheme
through experimental evaluations to be described in the next sec-
tion.

4.1 Multi-layered Cache Replacement Policies
The first round choice for a replacement begins from the topics.
The least popular topic, e.g B will be chosen to continue the next
round choice. The priority of each topic are based on a pre-specified
order in terms of group preference or other control policies. For ex-
ample, within a company, it is reasonable to give leisure or even sex
topics lower priorities to have more cache space for topics on work
and business. This mechanism provides us with a flexible topic-
based control over the performance of proxy caches.

After B has been decided as the candidate topic, from which we
can replace some pages to make space, the next round choice is a
little complicated since choosing a logical page within the selected
topic requires a tradeoff between the a page’s relevance to the topic
and the popularity shown so far.

Now, the decision left is straightforward, since we just need a tradi-
tional caching policy applicable to most the physical page context.
As shown in Figure 3, the scope for cache replacement is restricted
from the dashed circle to the dash-dotted circle, that is,

fD1fE1; E2g; D2; D3fE3; E4; E5gg

Caching policies that can be used in this case include LRU(least Re-
cently Used), LFU(Least Frequently Used), Size-Adjusted LRU[2]
and any good algorithms developed so far. We have proposed a
novel replacement algorithm, namely LRU-SP [5], which has proved
well suited for caching physical pages. In the following, we will re-
view the LRU-SP algorithm.

4.2 LRU-SP: A Replacement Policy for Phys-
ical Pages

LRU-SP (Size-adjusted and Popularity-aware LRU) is an extension
to LRU (Least Recently Used) proposed by K. Cheng et al in [5].
The basic idea behind is that if one hit saves a unit of time and
retrieval cost, then more hits should reasonably save more units
of time and cost. Thus, the benefit/size function of document i
with RFi references should be: RFi � (1=�Tit)=Si , Therefore, to
choose an document with least benefit, we should re-index all docu-
ments in cache in an increasing order on values of (S i ��Tit)=RFi
(instead of Si � �Tit), then, greedily picked the highest index ob-
jects one by one and purge from the cache until sufficient space
being made.

S1 ��T1t
RF1

�
S2 ��T2t
RF2

� � � � �
Sk ��Tkt
RFk

4.3 LRU-SP+: A Content-Aware Replacement
Algorithm for Proxy Caching

By employing LRU-SP as the physical page manager in a content-
aware cache management scheme, we get a content-aware LRU-
SP, we call it LRU-SP+. Let
 be the set of all active topics in
cache. In Algorithm 4.3, we use the following predefined func-
tions:. get topic least(T) chooses a topic with LEAST priority
in topic set T . get logical least(L), returns a logical page with
LEAST priority in set L. get physical least(P), returns a physi-
cal page with LEAST priority in set P . p2L(p) returns all logical
pages that a logical page p would belong to. l2P (l) returns all
physical pages belonging to a logical page l. t2L(t) returns all
logical pages contained in topic t.

Algorithm 1 LRU-SP+ Proxy caching replacement algorithm
Require: space = unused cache space
1: for each request q for some physical page, p 0 do
2: t0 = get topic least(
);
3: if p0 is in cache then
4: return a copy of p
5: else
6: Retrieve p0 from origin server
7: L = p2L(p0); f Find logical pages of p0g
8: T = [l2Ll2T (l); f Get all topics that logical pages L

should belong tog
9: max priority = maxfpriority(t)j8t 2 Tg

10: if max priority � priority(t0) then
11: t = topic with max priority;
12: L = t2L(t);
13: while size(p0) > space and :empty(L) do
14: l = get logical least(L);P = l2P (l);
15: while size(p0) > space and :empty(P) do
16: p = get physical least(P);
17: remove physical(p; P);
18: space+ = size(p)
19: end while
20: if empty(P) then
21: remove logical(l; L);
22: end if
23: end while
24: LRU-SP(l0, p0); fcache p0 within l0g
25: end if
26: end if
27: end for

The performance of this algorithm relies on the topic categorization
algorithm (l2T (�)). There is a long list of studies on automatic text
categorization, among which, SVM (Support Vector Machine) has
been regarded as a most powerful one for its fully automatic prop-
erty eliminating the need for manual parameter tuning[7, 8]. We
have adopted this technique. For the complexity in implementation,
at present we just manually set topic categories and all topics have
only a flat structure without defining a hierarchical structure for
all possible topics. To scale the scheme, it needs well-established
automatic clustering algorithms. However, even a simple form as
the implemented one, it is interesting and useful for companies or
organizations that wish their system resources be used in business-
related web accesses. It is also effective since a well-defined com-
pany or organization can always provide a definite description of
their interest.

5. EXPERIMENTATIONS

5.1 Performance of content-aware caching
Content-aware cache management integrates several key techniques
in a singe scheme. The performance of content-aware proxy caching
can be evaluated from various aspects.

1. Cost saving for resource discovery. It is a hard work to find
relevant and high quality information from the Web sites all
over the world. Content-aware proxy caching system offers
various facilities for resources sharing among like-minded
users.

2. High level performance tuning and control for system ad-
ministrators. One can now play around tangible information
units such as topics, logical page

3. Cost saving in time and network bandwidth. This is the basic
feature of most caching schemes.

It is important to incorporate the quality and relevance of informa-
tion with the conventional benefit/cost model. For example, busi-
ness companies may may quick response times for the information
relevant to their business, rather than material about leisure and
recreation. In content-aware schemes, we do not treat all hits iden-
tically, instead we put emphasis on priority of topics.

In this paper, we evaluate and compare the efficiency of our scheme
with LRV. LRV is a new caching scheme especially designed for
Web caching [11]. The designers have developed an elaborate func-
tion to handle various characteristics of Web objects. An efficient
content management scheme is given to LRV, which also classifies
objects into a few groups according to their access frequency. Ob-
jects in the first group are maintained using a unit caching policy
SIZE, whereas the rest groups are FIFO lists. Final decisions are
made by a central cache which is based on LRV-function.

5.2 Experiment Design
As document clustering/categorization and link structure extrac-
tion are well researched in information retrieval (IR) as well as the
World Wide Web, in this work, we focus on evaluating the effect
of differentiating value of topics. To do this, we define significance
factor for each topic. A significance factor is a real number be-
tween 0 and 2. The most significant topic is weighted 2. The de-
fault is 1.

5.2.1 Performance measurement
Instead of using byte hit ratio (BHR), which measure the efficiency
of caching in terms of the data size that has been served by cache,
we use another weighted hit ratio, namely profit ratios (PR). Let
!i 2 [0; 2] be the significance factor, di be the document corre-
sponding to the i0th request and N be the number of requests seen
by the cache. then

PR =

Pi=N

i=1
!i � yiP
i
!i

; yi =

�
1 if di in cache
0 otherwise

In addition, we also use hit ratio(HR) as in most caching schemes
to evaluate the performance.

HR =

Pi=N

i=1 yi

N
; yi =

�
1 if di in cache
0 otherwise

We use the KAMB dataset to be described in the next section as
input to drive the simulator. The simulator is based on the pre-
viously discussed architecture, in which new document(physical
page) forms or is added to a logical page. The logical page is in-
dexed and clustered to one or more topics. The cache management
is based on LRU-SP+.

5.2.2 Data collections
The KAMB dataset includes access logs as well as the correspond-
ing Web data collected from the Squid proxy server in our labora-
tory. The logs keep all of 873,824 requests for total 23.6 GB Web
data with the maximum hit ratio 0.251 and byte hit ratio 0.098. The
Web data has 21.3 GB in size. About 75% of the data have never
been used since they were retrieved for the first time. Even when
considering the margin errors. Thus, it is a significant progress if
we can make best use of these web data.

In Table 1, we list the major topics to be considered according to
the status of the laboratory. The priority between thee topics is
assigned based on significance and popularity.

Topics Description Priority

EDU Distance Education 3 (1.5)
HCI Human Machine Interface 1 (2.0)
GIS Geographical Information System 3(1.5)
LOG Logic Design 3 (1.5)
PRG Programming 1 (2.0)
LEI Leisure and Recreation 3 (1.0)
OTR Other 5 (0.5)

Table 1: Topics and their priority(topic significance)

5.3 Results and analysis
The experimental results under different datasets are shown in Fig-
ure 4. The subfigures depict the hit ratios and profit ratios achieved
when using trace dataset KAMB as input. Both hit ratio in terms
of how many requests are satisfied by cache, and profit ratio, a
weighted version of hit ratio by considering the significance fac-
tor of topics, performs better than the baseline algorithm LRV.

5.3.1 Topic-based priority results in high hit ratios
First, LRU-SP+ performs about 20% better than LRV in terms of hit
ratio as shown in Figure 4(left). This is because in this laboratory,
the selected topics are the major concerns of students and staff. By
giving higher priority to these topics, we can indeed keep almost all
popular contents. The documents that are not relevant to the these
topics are rarely accessed, which are less likely cached due to the
lower priority and even cached, they may quickly be replaced. The
topic-based priority guarantees popular contents being cached long
enough, whereas less popular ones will not occupy cache space.

5.3.2 Significance factor benefits more
In terms of PRs, LRU-SP+ outperforms over LRV by a factor of
30% or so as shown in Figure 4(right). This is reasonable because
in our significance factor assignment, contents with higher priority
are assigned a relatively high profit. This factor further enlarge the
benefits obtained from the hit ratio.

6. CONCLUSIONS AND FUTURE WORK
Large proxy caches are increasingly important for efficient utiliza-
tion of web contents and network resources. In this paper, we have

0 2 4 6 8 10

Cache Space in Percentage of Total Data Size

0.1

0.15

0.2

0.25

H
it

R
at

e
LRU-SP+
LRV

0 2 4 6 8 10

Cache Size in Percentage of Total Data Size

0.1

0.2

0.3

0.4

0.5

Pr
of

it
R

at
io

s(
PR

)

LRU-SP+
LRV

Figure 4: Experimental results

proposed a framework of a proxy caching where both users and
cache manager aware about the content of web documents. From
the cache users view of point, large proxy cache is a repository of
web documents shared by a set of users. From the cache view of
point, the content of web documents are collected by users with
special information needs, thus by extracting the popular topics of
this content, a cache can predict the interests and needs of users and
then make replacement decisions based on this kind of knowledge.
The main contributions of this paper are:

1. To the best of our knowledge, we have proposed for the first
time to use proxy cache as a shared information repository,
rather than simply a collection of physical data. A hierarchi-
cal data model was developed to exploit the cache contents
and their semantic information.

2. Based on this data organization, we have provided facilities
for easily finding useful information in the cache so as to
maximize the information sharing.

3. We also designed and implemented LRU-SP+, a content-
aware algorithm for web proxy caching.

Most importantly, in this paper, we are finding a new approach to
incorporating content management with performance tuning tech-
niques. We believe that this is a promising way to solve the prob-
lems caused by the exponential growth of the web size and Internet
traffic. Also, some more experiments are required to verify the
scheme for computing content-based popularity, and it is also nec-
essary to develop facilities for using cache as a web warehouse to
enable more active use of cache contents.

7. REFERENCES
[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Wililams, and

E. A. Fox. Caching Proxies: Limitations and Potentials. In
Proceedings of the Fourth International WWW Conference,
1995.

[2] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World
Wide Web. IEEE transactions on knowledge and data
engineering, 11(1), 1999.

[3] A. Bestavros, R. L. Carter, M. E. Crovella, C. R. Cunha,
A. Heddaya, and S. A. Mirdad. Application Level Document
Caching in the Internet. In IEEE SDNE’96: The Second
International Workshop on Services in Distributed and
Networked Environments, Whistler, British Columbia, June
1995.

[4] K. Cheng and Y. Kambayashi. Advanced Replacement
Policies for WWW Caching. In Proceedings of 1st
International Conference on Web Age Information
Management(WAIM’2000), LNCS 1846, pages 239–244.
Springer-Verlag, June 2000.

[5] K. Cheng and Y. Kambayashi. LRU-SP: A Size-Adjusted
and Popularity-Aware LRU Replacement Algorithm for Web
Caching. In Proceedings of 24th International Computer
Software and Applications Conference (Compsac’00), pages
48–53, 2000.

[6] K. Cheng and Y. Kambayashi. Multicache-based Content
Management for Web Caching. In Proceedings of 1st
International Web Information Systems
Engineering(WISE’00), pages 42–49, June 2000.

[7] T. Joachims. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features. European
Conf. Mach. Learning, ECML98, Apr. 1998. TR 23, Univ.
Dortmund, Lehrstuhl Informatik III.

[8] J. T.-Y. Kwok. Automated Text Categorization Using
Support Vector Machine. In Proceedings of the International
Conference on Neural Information Processing (ICONIP),
pages 347–351, Kitakyushu, Japan, October 1998.

[9] A. Luotonen. World-Wide Web Proxies. In Proceedings of
the First International World Wide Web Conference, Geneva
(Switzerland), May 1994.

[10] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page
Replacement Algorithm for Database Disk Buffering. In
Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 297–306, New York, 1993.

[11] L. Rizzo and L. Vicisano. Replacement Policies for a Proxy
Cache. Technical report rn/98/13, University College
London, Department of Computer Science, Gower Street,
London WC1E 6BT, UK, 1998. http://www.iet.unipi.it/ luigi/
caching.ps.gz.

[12] G. Salton and C. Buckley. Term-Weighting Approaches in
Automatic Text Retrieval. In K. S. Jones and P. Willett,
editors, Readins in Information Retrieval, pages 323–328.
Morgan Kaufmann, 1997.

[13] J. Shim, P. Scheuermann, and R. Vingralek. Proxy Cache
Design: Algorithms, Implementation and Performance. IEEE
Transactions on Knowledge and Data Engineering, 1999.

