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Abstract. In a temporal database, each data tuple is accompanied by a
time interval during which its attribute values are valid. In this paper, we
consider the null time intervals, that is, time intervals not intersected by
any time intervals in the temporal database. We deal with the problem
of computing temporal aggregates over null time intervals with length
constraints. By interval folding, we transform the problem into aggre-
gates over stabbing groups, maximal stabbing interval sets. We describe
the detailed algorithms and report the experimental results.
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1 Introduction

We consider the problem of computing temporal aggregates over null time in-
tervals. In a temporal database, data tuples are typically accompanied by time
intervals that capture the valid time of the information or facts. Consider a
scheduling system where scheduled activities for individuals or groups are stored
in a temporal relation. In order to create a new activity for a group of people,
one has to find time intervals during which all members can participate. We call
such time intervals null time intervals. A time interval is said to be a null time
interval when no time intervals in the database intersect with it. The qualifying
null time intervals should also satisfy length constraint. For example there must
be at least 90 minutes free time for the new activity. Furthermore, when no
qualifying null time interval is available, a partially null time interval can also
be seen as a feasible choice. For example, a query for free time intervals of 10
members may accept results with 1 or 2 members absent.

To report qualifying null time intervals, it is important to compute tem-
poral aggregates. Support for temporal aggregates is a predominant feature of
many data management systems. When aggregating temporal relations, tuples
are grouped according to their timestamp values. There are basically two types
of temporal aggregation: instant temporal aggregation and span temporal aggre-
gation [6, 12]. Instant temporal aggregation (ITA) computes aggregates on each
time instant and consecutive time instants with identical aggregate values are
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coalesced into so-called constant intervals, i.e., tuples over maximal time inter-
vals during which the aggregate results are constant [7]. On the other hand,Span
temporal aggregation (STA) allows an application to control the result size by
specifying the time intervals, such as year, month, or week. For each of these
intervals a result tuple is produced by aggregating over all argument tuples that
overlap that interval.

(a) Event time
Symbol Event Time

e1 A [1, 4]
e2 A [14, 17]
e3 B [7, 12]
e4 B [19, 21]
e5 A [25, 29]
e6 B [3, 5]

(b) Null time
Symbol Null Time

r1 A [5, 13]
r2 A [18, 24]
r3 A [30, 50]
r4 B [1, 2]
r5 B [6, 6]
r6 B [13, 18]
r7 B [22, 50]

(c) Aggregates

Null Time Group CNT

[20, 21] {A} 1

[22,24] {A,B} 2

[26, 29] {B} 1

[30,35] {A,B} 2

Fig. 1: Running example of null time aggregates on [20, 35]

In this paper, we study the problem of temporal aggregates over null time
intervals. Fig. 1 gives a running example. Assume the time domain is [1, 50].
Event time in Fig. 1 (a) is physically stored in a temporal database, in which
each event symbol is accompanied by an event time. Null time in Fig. 1 (b)
is a derived relation during query time. For example, A has an event sequence
{[1, 4], [14, 17], [25, 29]}, from which the null time {[5, 13], [18, 24], [30, 50]} is de-
rived. Temporal aggregates on [20, 35] as shown in Fig. 1 (c) are computed by
grouping tuples in the query range at first and then applying aggregate functions
to each group. During [22, 25], [30, 35], both A and B are not overlapped by any
event time, we call them truly null time, whereas [20, 21] and [26, 29]are partially
null time.

Support for null time intervals is not provided by current database products.
Syntactically, all relational database management systems (RDBMS) support a
representation of “missing information and inapplicable information”. Null (or
NULL) is a special value to indicate that a data value does not exist in the
database. However, to our knowledge, there not exist database systems that
support null time since it not a practical solution to explicitly store null time
intervals in databases. Neither NOT IN or NOT EXISTS is suitable for querying
time intervals that not intersected by other intervals because null time intervals
depend on time domain.

Our contributions include: (1) we introduce a new operation called interval
folding and transform the problem to interval stabbing problem; (2) we propose
stabbing group as a new temporal grouping method to solve the interval stabbing
problem. (3) We develop a balanced tree based data structure and algorithms
for efficient computation of temporal aggregates over null time intervals.
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The rest of paper is organized as follows. In Section 2, we define the problem
and proposes the main techniques. Section 3 describes the main techniques.
Section 4 introduces the experimental results. Section 6 concludes the paper and
points out some future directions.

2 Problem Definition

Let E = {e1, e2, · · · , ek} be the set of event symbols and N be the time do-
main. The triplet (ei, si, fi) ∈ E × N × N is an event interval or real time
interval. The two time points si, fi are called event times, where si is the start-
ing time and fi is the finishing time, si ≤ fi. The set of all event intervals
over E is denoted by I. An event sequence is a series of event interval triplets
ES = 〈(e1, s1, f1), (e2, s2, f2), · · · , (en, sn, fn)〉, where si ≤ si+1, and si < fi.
A temporal database D is a set of records, {r1, r2, · · · , rm}, each record ri
(1 ≤ i ≤ m) consists of a sequence-id and an event interval.

For S ⊆ D, a null time interval a is an interval that for any b ∈ S, a∩b = ∅.
As shown in Fig. 2, during real time intervals events are valid, while events are
invalid during null time intervals. We assume in this paper that only real time
intervals are explicitly stored in database. Given the temporal database D and
a query interval [p, q] null time intervals can be derived as follows.

[p, q]−
⋃

[s,f ]∈D

[s, f ]

event intervals (real time intervals)

null time intervals

Fig. 2: Real time interval vs. null time interval

Given an event sequence q = 〈(e1, s1, f1), (e2, s2, f2), · · · , (en, sn, fn)〉, the set
T = {s1, f1, s2, f2, · · · , si, fi, · · · , sn, fn} is called a time set corresponding to
sequence q where 1 ≤ i ≤ n. If we order all the elements in T and eliminate
redundant elements, we can derive a sequence TS = 〈t1, t2, t3, · · · , tk〉 where
ti ∈ T , ti < ti+1. TS is called a time sequence corresponding to event sequence
q.

When discussing time intervals, it is important to describe pairwise rela-
tionships between two time interval-based events. According to Allen’s temporal
logics [1], the basic temporal relations between any two event intervals are shown
in Fig. 3. Except (g), each of (a)–(f) has its inverse relation. For example, “A
before B” also means “B after A”, “A contains B” implies “B is contained by
A”, etc. These relationships can describe any relative position of two intervals
based on the arrangements of the starting and finishing time points.
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Fig. 3: Temporal relations between two intervals

Now we can formulate the problem we target as follows:
Null Time Reporting Problem: Given a temporal database D, a query interval

[p, q] and a parameter α, report all null time intervals b = [bs, bf ] ⊆ [p, q] and
|b| ≥ α.

2.1 Interval Folding

We introduce interval folding, an operation that transforms an interval to a
shorter one. For interval b = [bs, bf ], the α-folding of b is defined as:

b− α = [bs + (1− λ)α, bf − λα]

where λ is a parameter, which can be any real value between 0 and 1, for example

1. λ = 0, [s, f ]→ [s+ α, f ]
2. λ = 1, [s, f ]→ [s, f − α]
3. λ = 1

2 , [s, f ]→ [s+ α
2 , f −

α
2 ]

The α-folding of an interval set S, denoted by S − α, is defined by applying
α-folding to each element interval.

Lemma 1. Let S be a set of intervals. If
⋂
b∈S(b−α) 6= ∅, then

⋂
b∈S(b−α) =⋂

b∈S b− α

Proof. Let ŝ = max{bs | [bs, bf ] ∈ S}, f̂ = min{bf | [bs, bf ] ∈ S}. Then⋂
b∈S

b = [ŝ, f̂ ]

It is obvious that max{bs + (1−λ)α | [bs, bf ] ∈ S} = ŝ+ (1−λ)α, min{bf −λα |
[bs, bf ] ∈ S} = f̂ − λα, that is⋂

b∈S

(b− α) = [ŝ+ (1− λ)α, f̂ − λα] =
⋂
b∈S

b− α.
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Theorem 1. The intersection of S has a length larger than α, if and only if the
intersection of S − α is non–empty:⋂

b∈S

b− α 6= ∅ ⇔
⋂
b∈S

(b− α) 6= ∅

Fig. 4: Interval folding

Proof. Let x be the intersection of S and x− α 6= ∅. As for any b ∈ S, b− α ⊇
x− α, therefore ⋂

b∈S

(b− α) ⊇ x− α 6= ∅

On the other hand, if
⋂
b∈S(b − α) 6= ∅, then by Lemma 1,

⋂
b∈S b − α =⋂

b∈S(b− α) 6= ∅.

Theorem 1 tells that by α-folding, a null time reporting problem can be
transformed into the interval stabbing problem: given a query interval [p, q],
report all non–empty null time intervals in [p, q].

3 Temporal Aggregates Over Null Time Intervals

We now present the techniques for computing temporal aggregates over null time
intervals. Given a temporal database D, a query interval [p, q] and the length
threshold α, the basic idea to compute the temporal aggregates is to derive null
time intervals from the event times, and then by α-folding, transform the problem
to interval stabbing problem.Thus, one just need to report all non–empty null
time intervals contained in the query interval.

3.1 Instant temporal aggregation

A solution to interval stabbing problem is instant temporal aggregation. The key
idea is to partition the timeline into elementary intervals. The elementary inter-
vals are obtained by sorting the endpoints of argument intervals and consecutive
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two endpoints define an elementary intervals. For each elementary interval, an
aggregate value is computed.

Fig. 5: Instant temporal aggregation

Fig. 5 shows the temporal aggregates by instant temporal aggregation over
{< e1, s1, f1 >,< e2, s2, f2 >, · · · , < e4, s4, f4 >}. The timeline is partitioned
into a sequence of elementary intervals ω1, · · · , ω7 from left to right: ω1 =
[s1, s2], ω2 = [ss, f1], ω3 = [f1, s3], ω4 = [s3, s4], ω5 = [s4, f2], ω6 = [f2, f4], ω7 =
[f4, f3]. With each elementary interval, we maintain a list of event symbols Ωi
and a count Ci.

ωi =
⋂

ek∈Ωi

[sk, fk], Ci = |Ωi|

3.2 Stabbing groups

The brute–force approach to computing instant temporal aggregates requires
multiple passes to scan the argument relation. We propose a balanced tree based
approach for efficient computation. The basic idea is to maintain the aggregate
groups using a balanced search tree.

As shown in Fig. 6, each node of the balanced tree keeps a stabbing group.
A stabbing group is a set of intervals stabbed by a common set of points. An
interval b is stabbed by a point q is q ∈ b. The common set of points is called group
representative, which is actually the intersection of the argument intervals. In
Fig. 6, the the representative of stabbing group Imid is an interval xmid. The two
children of Imid, stabbing groups Ileft and Iright have their group representatives
xleft and xright, and xleft < xmid < xright. The < relation is the same as Allen’s
before relation, that is, a = [as, af ], b = [bs, bf ]

a < b⇔ af < bs
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Fig. 6: Balanced tree for stabbing groups

Fig. 7: Insert new intervals into the tree

To insert a new interval into the balanced tree, we first do binary tree search
by comparing with the group representatives on the search path. Whenever the
interval to be added overlaps the group representative of a node, it is added to
that node, which may cause change to the group representative. Fig. 7 depicts
how b is inserted into the tree. Suppose a is the group representative of the
target group,

1. if a overlaps b, the representative of the a is changed to a ∩ b.In addition,
a− b, and b− a are added recursively to the left and right subtrees.

2. if a contains b, the representative of the current group is changed to a∩b.In
addition, [as, bs], and [bf , af ] are added recursively to the left and right
subtrees.

3. if a before b, if the right child is absent, b will be added as a new right child
of a.

3.3 Stabbing temporal aggregation(BTA)

We now describe the algorithm in detail. Since the temporal aggregates are
computed based on stabbing groups, the algorithm is called stabbing temporal
aggregation (BTA).
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Algorithm 1 BTA (Building aggregation tree)

Input: α-folded null time intervals S = {[s1, f1], [s2, f2], · · · , [sn, fn]}
Output: Temporal aggregates of S

1: for i← 1 · ·n do
2: b← [si, fi]
3: t← T.find(b)
4: if t = nil then ] Add a new node
5: t.add(b)
6: else ] Update existing nodes recursively
7: a← t.ω
8: t.ω ← a ∩ b
9: t.Ω ← t.Ω ∪ {b} ] For report

10: t.C ← t.C + 1 ] For count
11: L← t.leftChild
12: R← t.rightChild
13: if a overlaps b then
14: L.insert(a− b)
15: R.insert(b− a)
16: else if a contains b then
17: L.insert([as, bs])
18: R.insert([bf , af ]);
19: end if
20: end if
21: end for
22: return T

Given a temporal database D, the algorithm takes a query interval [p, q] and
the parameter α as input, and report all null time intervals that satisfy the
length constraint. For count, report the number of qualifying null time intervals.
The process of computing aggregates are outlined as follows.

1. Query the database D for event times that intersect [p, q];
2. Derive the null time intervals from the obtained event times;
3. Apply α-folding to the null time intervals;
4. Create the balanced search tree for the α-folded null time intervals;
5. Traverse the tree and report groups and their representatives.

In Algorithm 1, we use an AVL tree T as the main data structure. T is built
by a recursively inserting intervals.

– T.find(): Search the tree/subtree rooted on T for a given interval, return
the first node whose representative intersecting with the argument interval

– T.insert(): Insert a node to the tree/subtree rooted on T
– t.add(): Add a new node to the current location t

The time complexity of BTA algorithm is the complexity of constructing a
balanced search tree O(n log n). Notice step 2, 3 and 4 can be done simultane-
ously, which means the proposed method needs to scan the query result only
once.
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4 Experimental Analysis

To verify the proposed method, we implemented naive ITA and the proposed
BTA algorithms for computing temporal aggregates over null time intervals. We
evaluate algorithms in terms of response time and memory space. The response
time includes database query, α-folding, and temporal aggregation. We do exper-
iments for two types of queries: stabbing report and stabbing count. In stabbing
report, the detail of stabbing groups are reported, while in stabbing count, only
count for each group is maintained and output.

The input to the algorithm consists of 1, 000 event symbols and 1, 000 event
times for each event. The starting times are random numbers with uniformly
distributed on [1 · ·106]. The length of the random intervals are either uniform
or short. Uniform random intervals have a uniform distributed among [1, 2, 000].
Short random intervals have an exponentially distributed length with expected
value 2, 000.

The results are shown in Fig. 8–Fig. 11. In each of the plots, x-axis represents
query intervals, ranging from 1% to 11%. First, in terms of response time, BTA
outperforms naive ITA under uniform dataset as well as exponential dataset and
for both count and report queries. Database query time as a part of response
time varies with the query ranges but it is not a dominant part (only 10% of
response time, see Fig. 9). The aggregation time is the main part of response
time has a similar trend with response time (Fig. 10). The memory space for
BTA is significantly smaller than naive ITA (Fig. 11). In total, BTA provides
better performance for computing null time aggregates.

5 Related Work

In [12], Kline and Snodgrass proposed an algorithm for computing temporal
aggregation using a main memory-based data structure, called aggregation tree.
It builds a tree while scanning a temporal relation. After the tree has been built,
the answer to the temporal aggregation query is obtained by traversing the tree
in depth-first search. It should be noted that this tree is not balanced. The
worst case time to create an aggregation tree is O(n2) for n stored tuples. In
an extension of his previous work , Kline proposed using a 2 − 3 tree, which is
a balanced tree, to compute temporal aggregates [3]. The leaf nodes of the tree
store the time intervals of the aggregate results. Like the aggregation tree, this
approach requires only one database scan. The running time is O(n log n) given
that the database was initially sorted.

Interval stabbing problem is well-known problem in computational geometry
and there exist a number of results, for example [10]. However, interval stabbing
in this context is aimed to preprocess the intervals into a data structure for
repetitive query. The query time is at least Ω(1 + k) for output size k. The
preprocessing is often expensive, requires multiple scans.
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Fig. 8: Response times
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Fig. 9: Database query cost
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Fig. 10: Aggregate computation cost
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6 Conclusion

In this paper, we dealt with the problem of computing temporal aggregates over
null time intervals. Null time intervals are intervals not overlapped by any event
time intervals. We introduced α-folding and transformed the problem into the
interval stabbing problem. To compute aggregates for stabbing groups efficiently,
we proposed balanced search tree based data structure that maintains stabbing
groups and their associated aggregates. The proposed algorithm requires only
scan the argument intervals exactly once.
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