
LRU-SP: A Size-Adjusted and Popularity-Aware LRU Replacement Algorithm
for Web Caching

Kai Cheng and Yahiko Kambayashi
Graduate School of Informatics, Kyoto University

Sakyo Kyoto 606-8501, Japan
fchengk, yahikog@isse.kuis.kyoto-u.ac.jp

Abstract

This paper presents LRU-SP, a size-adjusted and
popularity-aware extension to Least Recently Used (LRU)
for caching web objects. The standard LRU, focusing on
recently used and equal sized objects, is not suitable for
the web context because web objects vary dramatically in
size and the recently accessed objects may possibly differ
from popular ones. LRU-SP is built on two LRU exten-
sions, namely Size-Adjusted LRU and Segmented LRU. As
LRU-SP differentiates object size and access frequency, it
can achieve higher hit rates and byte hit rates. Further-
more, an efficient implementation scheme is developed and
trace-driven simulations are performed to compare LRU-
SP against Size-Adjusted LRU, Segmented LRU and LRV
caching algorithms.

1. Introduction

With the exponential growth of the World Wide Web,
techniques for alleviating the bottlenecks to network per-
formance have gained increasing importance. Caching is
one of such techniques which stores frequently used data
near the user to diminish unnecessary remote accesses. Web
caching is effective because a few resources are requested
often by many users, or repeatedly by a specific user. This
phenomenon is known as locality of reference.

Cache replacement algorithm plays a key role in cap-
turing such locality to maximize hit rate and other perfor-
mance metrics. LRU (least recently used) is the most widely
used and important replacement algorithm ever developed
for main memory and disk caching. LRU exploits tempo-
ral locality of reference, keeping the recently used while
dropping the least recently used objects. LRU is simple to
implement, robust and effective in paging scenarios.

However, LRU is not suitable for web caching due to
several limitations. LRU focuses on the recently used and

equal sized objects, which corresponds to R in Figure 1, the
recently used subset of objects .

F

R

S

U

Figure 1. Relationship between the recently
accessed, frequently accessed and smaller-
sized objects R, F and S respectively

Web caching is on the basis of documents that vary dra-
matically in size. It is more profitable to cache smaller sized
objects, because a larger document may take up a space for
several smaller ones. Thus, it is highly desirable to keep as
many as possible smaller sized objects, i.e. the subset of ob-
ject S in Figure 1. On the other hand, the recently accessed
data may be just temporarily referenced, so R may possibly
differs from the frequently accessed objects F. It is ideal to
keep the objects in (R \ S \ F).

A number of efforts are made to extend the standard
LRU [1, 2, 6, 5]. Unfortunately, up to date, there is still
no efficient approach to achieving the complete goal, that
is, to explicitly exploits both access frequency and object
size in LRU. This is partly because of the complications in
implementing such an extension in current LRU framework.

In this paper, we propose a size-adjusted and popularity-
aware LRU (LRU-SP). LRU-SP is built upon two existing
replacement algorithms: Size-Adjusted LRU and Segmented
LRU. Size-Adjusted LRU is an (R \ S)-based extension
which evaluates objects in terms of both size and recency
of reference. Segmented LRU is an (R \ F)-based exten-
sion, in whihc objects with different access frequency are
managed in different LRU queues.

The paper is organized as follows: Section 2 briefly re-

views the related work; In Section 3, we describe a cou-
ple of typical LRU extensions as the basis of our new re-
placement algorithm; Section 4 presents the LRU-SP re-
placement algorithms, containing accumulative cost-to-size
model, implementation scheme; In Section 5, we experi-
mentally evaluate LRU-SP with its predecessors; Section 6
describes some directions of future work and concludes this
paper

2. Previous Work

We briefly review previous studies on replacement algo-
rithms, especially those based on LRU.

GreedyDual-Size [3] is an interesting algorithm that
combines recency of reference with object size and retrieval
cost. Based on its size and cost, an object is given a initial
value when it first gets in or gets a new reference. Then the
value decreases little by little with time if it gets no more
reference. Object with least value is the candidate to be
replaced. One problem with GreedyDual-Size is that the
difference of popularity has not been used. Additionally, it
is required to maintain priority at a cost of O(logk) (k is
number of objects in cache).

A recent technical report [4] presents GDSP, an
popularity-based extension to GreedyDual-Size. Although
similar somehow to our approach, however, just like
GreedyDual-Size, this algorithm requires to maintain large
priority queue .

Least Relative Value (LRV [7]) is another replacement
algorithm for proxy cache. Although it has taken into ac-
count size, recency and frequency, however, it has been
criticized as heavy parameterization and high overhead in
implementation [3].

There are several frequency-based extensions to LRU in
research of traditional paging or buffering scenarios, includ-
ing FBR (Frequency-Based Replacement) [8], LRU-K and
2Q [6], and Segmented LRU [5]. However, none of them
take into account the variable sizes of web objects.

3. Extended LRU Policies

3.1. Segmented LRU

Segmented LRU is a frequency-based extension to basic
LRU especially designed for disk caching where all pages
are identical in size [5]. Segmented LRU is based on the
observation that objects with at least two accesses are much
more popular than those with only one access during a short
interval. In Segmented LRU, cache space is partitioned into
two segments: probationary segment and protected seg-
ment.

New objects (with only one access) are first faulted into
the probationary segment, whereas objects with two or more

accesses are kept in the protected segment. When a proba-
tionary object gets one more reference, it will change to the
protected segment. When the whole cache space becomes
full, the least recently used object in the probationary seg-
ment will first be replaced. The protected segment is finite
in size. When it gets full, the overflowed will be re-cached
in probationary segment. Since objects in protected seg-
ment have to go a longer way before being evicted, popular
object or an object with more accesses tends to be kept in
cache for longer time.

Although Segmented LRU can differentiate objects with
different popularity, while keeping track of the recency of
reference, it is not suitable for web caching where object
size is a critical factor. When extended to web caching, an-
other problem with this algorithm is the parameterization of
segment sizes and the number of segments.

3.2. Size-Adjusted LRU

To deal with variable sizes of web objects, Charu Ag-
garwal et al proposed a generalized LRU replacement algo-
rithm, namely Size-Adjusted LRU [2]. The Size-Adjusted
LRU sorts all objects in cache in terms of the cost-to-size
ratio, 1=(Si ��Tit), where Si is the size of object i, �Tit is
the elapsed time from last access to current time t. It then
greedily discards those with least cost-to-size ratios from
the cache. In practice, the objects are reindexed in order of
nondecreasing values of Si ��it:

S1 ��1t � S2 ��2t � � � �Sk ��kt

Objects with highest index are one by one greedily picked
and purged from the cache to make space for more potential
object. Furthermore, to avoid expensive calculation of the
cost-to-size ratios for all objects, a so called Pyramidal Se-
lection Scheme (PSS) approximate scheme was developed.
In this scheme, objects are classified into a limited number
of groups based on blog2(size)c, so that objects within a
same group are similar in sizes. Each group is maintained
using a LRU mechanism: a hit will make the hit object move
to the most recently used end of this LRU list. The ba-
sic Size-Adjusted LRU policy only applies to a limited set
of least recently used objects from all nonempty groups to
make final decision. The object with largest (Si ��Tit) will
be purged from the cache. In Size-Adjusted LRU, objects
with similar size are treated equally no matter how popu-
lar they are. This can be explained using the cache state
transition graph or CSTG.

An CSTG describes how an object being cached in a life-
cycle. Let sq indicates the state an object is out of cache
and si represents object is cached in subcache i. Figure 2
depicts the CSTG of Size-Adjusted LRU in which access
frequency does not affect the cache states.

sq

nref > 0

nref=1
Out nref=1

Out

nref=1

Out

Out
nref=1

Out nref=1

nref > 0

nref > 0

nref > 0

nref > 0

s s

1s0 s

34

s2

Figure 2. CSTG of Size-Adjusted LRU: access
frequency does not affect cache states

4. Size-Adjusted and Popularity-Aware LRU

The basic idea behind Segmented LRU is to separate ob-
jects with different access frequency in different segments,
while the key idea underlying Size-Adjusted LRU is to dif-
ferentiate objects with different sizes or size-levels by keep-
ing them in different LRU queues. The major objective of
LRU-SP is to incorporate both object sizes and access fre-
quency so as to handle long-term popularity and adjust to
variable object sizes.

4.1. Handling Long-Term Popularity

Size-Adjusted LRU does not distinguishobjects with dif-
ferent access frequency. When an object gets a hit, it just
moves to the most recently used end of that LRU queue. So
the objects in a same LRU queue have a similar opportu-
nity to survive, in other words, they have nearly the same
lifetime before aged out. In fact, among these objects, those
with more accesses are very likely to be more popular in the
near future.

As a result, even in the case that two objects have
the same access frequency during a long period only the
distributions are different, the cache results will be quite
different. For example, if requests occur periodically
(Figure 3(a)) and each subsequent request occurs before
the object ages out, it will stay in the cache. However, if
accesses are locally concentrated, the object may have aged
out from cache before it gets the next access (Figure 3(b))
even if the average occurrence is the same as the previous
case. This is not the case in Segmented LRU, because ob-
jects with more accesses are protected in a separate seg-

ment.

Age Out

out

(b)

(a)

cache

cache

time

Age Out

in

time

in

out

Figure 3. Popular objects being evicted early

In summary, to distinguish objects with different access
frequency, cache state of an object should change with the
increment of access times. This can be implemented by
moving objects between different LRU queues as done in
Segmented LRU, instead of being fixed in one LRU queue
as in Size-Adjusted LRU.

4.2. Handling Variable Object Sizes

One of the key complications in implementing cache re-
placement policies for Web objects is that the objects to
be cached are not necessarily identical in size. Although
we can use a function to score objects with different sizes
and access recency and frequency, however, this approach
has proven too expensive and not suitable for Web caching.
Fortunately, size is a relatively stable property compared to
other characteristics of Web objects. Thus a static strategy is
suitable for handling the non-identity of object sizes. Size-
Adjusted LRU uses size-based static classification to reduce
the complexity derived from non-homogeneous sizes. By
this strategy, objects with similar sizes are maintained to-
gether, the differences of sizes can be overlooked. This idea
can be generalized to handle more sophisticated classifica-
tion.

4.3. Incorporating Size and Frequency in LRU-SP

The basic idea of LRU-SP is to incorporate the
frequency-based extension of Segmented LRU into the
Size-Adjusted LRU scheme. Here an important issue is how
to change the cache state when an object gets one more ac-
cess. To answer this problem, we should develop an ex-
tended cost-to-size model like in Size-Adjusted LRU.

New Cost-To-Size Ratio Model

We use a new cost-to-size ratio model to handle access fre-
quency. It is been explored by different researchers that web

1 2 3 4 5

1 2 3 4 5

(a)

0

 (b)

0 Time

sum

sum

Time

Figure 4. Popular objects remain in cache

access is non-uniform in a great extent, the more frequently
an object has been accessed, the more likely it will be re-
used in the future [3, 7]. Since the total cost being saved is
prepositional to access times, it is reasonable to incorporate
access times in the cost-to-size ratio model. Given nrefi is
the number of accesses since it being cached, then

(nrefi=(Si ��Tit))

Based on this benefit-to-cost model, the influence of re-
references is utilized (represented by sum): the objects with
more references can stay more time before driven out. Fig-
ure 4(a) and Figure 4(b) show the cases corresponding to
Figure 3(a) and Figure 3 (b): the objects are usually kept
in cache in both cases, while the object in Figure 3 (b) is
evicted from cache.

Implementation of LRU-SP

It is unrealistic to maintain a single priority queue for
LRU-SP in terms of the above cost-to-size ratio due to
the expensive computation and sorting. Thus, we de-
vise the following approximate implementation scheme for
LRU-SP (Figure 5): Objects are classified into a lim-
ited number of groups according to blog2(Si=nrefi)c, in-
stead of blog2(Si)c; A hit may make the requested ob-
ject move to new LRU list according to its new value of
blog2(Si=nrefi)c; Each group is managed using a LRU
policy. The extended cost-to-size model is applied to the
eviction candidates from all nonempty groups, purging the
object with largest (�Tit � Si=nrefi).

Intuitively, an object with more accesses has been treated
as a smaller one (Si=nrefi), which, to some degree, awards
the popular object to become competitive with less popular
but small objects. In this scheme, the cache state of an ob-
ject changes with each hit and with the time elapsed. Ac-
cording to the cache state transition graph in Figure 6:

Eviction

Most Recently UsedLeast Recently UsedLRUs

evict object with maximum (atime*size/nref)

C
an

di
da

te
 S

et

LRU, size/nref = 1 to 1

LRU, size/nref = 4 to 7

LRU, size/nref = 8 to 15 Hit

15/4

15/2, 15/3

size/nref = 15/1

Hits

Hit

LRU, size/nref = 2 to 3

Figure 5. LRU-SP: Larger yet popular objects
preserved into LRU queues for smaller ob-
jects

1. An object will stay in the same LRU list unless it ac-
cumulates sufficient accesses;

2. The object will be cache in a next LRU list at the most
recently used end if it accumulates sufficient accesses
before aged out (timeout) ;

3. When an discarded object re-enters the cache, it will
start again, in other words, the scheme does not keep
history information for evicted objects.

Overhead and Efficiency

According to [2], Size-Adjusted LRU has N =
dlog (M + 1)e LRU queues where M is the size of cache
space. If the cache space is too large, the overhead in main-
taining these LRU lists is considerable. However, in prac-
tice, the N is reasonable to be no larger than 20, because the
objects larger than 1MB (224B) are quite rare. Furthermore,
maintaining a LRU queue just requires a tail insertion/head
taking and incurs no overhead and choosing the final victim
only needs constant times (less than 20) of comparisons. In
all, the overhead of this scheme is independent of the scales
of object space and cache space, in other words, it is O(1)
in any cases. In addition, LRU-SP has no space boundaries
for LRU queues, so it is a parameter-free.

Dataset Total Requests Total Bytes Unique Bytes HRmax BHRmax

NLANR 1,848,319 21.0 GB 15.9 GB 0.228 0.245
DEC 4,985,128 45.1 GB 30.1 GB 0.476 0.332

Table 1. Profiles of trace datasets

nref=1

nref=1
Out nref=1

Out

nref=1

Out

Out
nref=1

Out nref=1

nref>16
nref=9 to 15

nref=5 to 7

nref=3nref=2

nref=4

nref=16

nref=8

s0

s0

s4 s3

s2

s1

Figure 6. CSTG of Segmented LRU: cache
states change with the increment of access
frequency, popular objects alive longer

5. Performance Evaluation

5.1. Data Collections

We have two datasets to be used in driving our caching
simulator: NLANR and DEC as summarized in Table 1.
The dataset NLANR in Table 1 is a one-week top level
caching proxy traces publicly available 1. This dataset
contains 1,848,319 requests with total 21.0 GB Web data,
where unique data is 15.9 GB with a maximum hit rate
0.228 and byte hit rate 0.245. The DEC dataset contains
5.0M requests with total 45.1 GB web data, where unique
data is 30.1 GB with a maximum hit rate 0.476 and byte hit
rate 0.332.

5.2. Simulation Results

We have carried out simulations on both trace datasets of
NLANR and DEC. In addition to evaluation of LRU-SP and
its predecessors Size-Adjusted LRU and Segmented LRU,
we also compare them to Least Relative Value (LRV) [7], a

1ftp://ircache.nlanr.net/Traces/

well-known replacement algorithm, which also takes object
sizes, recency and frequency of reference into account.

Outperforming Segmented LRU LRU-SP achieves
much higher hit rates than Segmented LRU under two
datasets, (Figure 7 and Figure 9). Meanwhile, LRU-SP
performs almost as well as Segmented LRU in terms of byte
hit rates. This is because Segmented LRU cares nothing
about object sizes, thus quite a number of smaller objects
are displaced by bigger objects. Whereas LRU-SP balances
well between object sizes and popularity, so it preserves a
large number of smaller and popular objects in cache, which
guarantees high hit rate but no harm to byte hit rates.

Outperforming Size-Adjusted LRU LRU-SP signifi-
cantly improves Size-Adjusted LRU in byte hit rate under
dataset NLANR (Figure 8 and Figure 10) without loss of
hit rate. The result is not so good for dataset DEC, because
the access pattern of DEC biases towards so many small
objects that the strategy of awarding bigger yet popular ob-
jects became not so effective. LRU-SP performing better
than Size-Adjusted LRU demonstrates that LRU-SP has re-
ally retained bigger objects that are popular enough to make
up the loss of cache space.

Outperforming Least Relative Value LRU-SP also
outperforms LRV in most cases, especially in terms of hit
rate. The reason is the pure LRV is unrealistic to imple-
ment. The simplified implementation of LRV given by its
designers only differentiates object sizes in its first queue
(for objects with only one access). While in LRU-SP, ob-
jects with different sizes are distributed among several LRU
queues. So LRU-SP makes better advantage of information
about sizes than LRV. Consequently, LRU-SP can achieve
higher hit rates than LRV.

6. Conclusion and Future Work

High performance, low overhead and adaptability to
access patterns are desirable properties to Web caching.
Based on the analysis of two LRU extensions, in this pa-
per, we have proposed a new cache replacement algorithm,
namely, LRU-SP. LRU-SP incorporates key factors to Web
caching in a consistent way, which integrates the major ad-
vantages of its predecessors such as low overhead, adapt-
ability, and improves them by significantly reducing ”early
evictions” and ”cache pollution”. Trace-driven simulations
show LRU-SP outperforms its predecessors.

0 2 4 6 8 10

Percentage of Maximum Space Required

0.2

0.25

0.3

0.35

0.4

0.45

0.5
H

it
R

at
e

LRU−SP
Size−Adjusted LRU
Segmented LRU
Least Relative Value

Figure 7. Hit rates under DEC dataset

0 2 4 6 8 10

Percentage of Maximum Space Required

0.1

0.15

0.2

0.25

B
yt

e
H

it
R

at
e

LRU−SP
Size−Adjusted LRU
Segmented LRU
Least Relative Value

.

Figure 8. Byte hit rates under DEC dataset

0 2 4 6 8 10

Percentage of Maximum Space Required

0.1

0.15

0.2

0.25

H
it

R
at

e

LRU−SP
Size−Adjusted LRU
Segmented LRU
Least Ralative Value

Figure 9. Hit rates under NLANR dataset

0 2 4 6 8 10

Percentage of Maximum Space Required

0.1

0.15

0.2

0.25

0.3

B
yt

e
H

it
R

at
e

LRU−SP
Size−Adjusted LRU
Segmented LRU
Least Relative Value

Figure 10. Byte hit rates under NLANR dataset

Meanwhile, we also found several directions need fur-
ther work. One is to introduce precise access frequency.
Currently we only use access times since an object entering
the cache. It is important to use k-size window as in LRU-K
to calculate real dynamic frequency. Another work is to ex-
plore the possibility of introducing more application-level
information as well as new cache performance metrics.

References

[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Wililams, and
E. A. Fox. Caching Proxies: Limitations and Potentials. In
Proceedings of the Fourth International WWW Conference,
1995.

[2] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World
Wide Web. IEEE transactions on knowledge and data engi-
neering, 11(1), 1999.

[3] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Al-
gorithms. In Proceedings of the 1997 USENIX Symposium on

Internet Technology and Systems, pages 193–206, December
1997.

[4] S. Jin and A. Bestavros. Popularity-Aware GreedyDual-Size
Web Caching Algorithms. Technical Report TR-99/09, Com-
puter Science Department, Boston University, 1999.

[5] R. Karedla, J. S. Love, and B. G. Wheery. Caching Strate-
gies to Improve Disk System Performance. IEEE Computer,
27(3):38–46, March 1994.

[6] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm for Database Disk Buffering.
In Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 297–306, New York, 1993.

[7] L. Rizzo and L. Vicisano. Replacement Policies for a Proxy
Cache. Technical report rn/98/13, University College Lon-
don, Department of Computer Science, Gower Street, Lon-
don WC1E 6BT, UK, 1998. http://www.iet.unipi.it/ luigi/
caching.ps.gz.

[8] J. T. Robinson and M. V. Devarakonda. Data Cache Man-
agement Using Frequency-based Replacement. Performance
Evaluation Review, 18(1):134–142, May 1990.

