
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Regular Expression-based DGL for Meaningful

Synthetic Data Generation
 Kai Cheng

Department of Information Science

Kyushu Sangyo University, Fukuoka City, Japan

chengk@is.kyusan-u.ac.jp

Abstract— Synthetic datasets are necessary for performance

evaluation and function test in most database applications. In this

paper, we propose a regular expression-based data generation

language (DGL) for flexible test data generation. We extend the

standard regular expressions to include references to external

resources, sequential numbers, probability distributions,

type/format inference, and dictionary sampling. In order to

implement the proposed scheme efficiently, result caching and

database caching techniques are developed and evaluated by

experiments.

Keywords—synthetic data generation, data generation

language (DGL), regular expression, finite automaton,

performance analysis, type/format inference

I. INTRODUCTION

In recent years, tools for populating the database with
meaningful data that satisfy database constraints and statistical
distributions play an increasingly important role in the
development of database applications[2][12][20]. Since real
data is typically subject to privacy regulations, synthetic data is
a feasible solution in the development phrase. There are a
number of previous work on automated data generation
[2][9][10][12]. These studies however are limited in the types
of data that can be generated and the obtained text data are
often meaningless random strings.

A regular expression is a sequence of characters that define
patterns in text. A pattern consists of one or more character
literals, operators, or constructs. Each character in a regular
expression is either a meta-character, having a special meaning,
or a regular character that has a literal meaning. Typically,
these patterns are primarily used to find matchings within a
large body of text. Character sets are one of the most
commonly used features of regular expressions. By placing the
characters to match between square brackets, a character set is
defined where any character in it can be matched. A series of
shorthand character sets are available. For example, \d is short
for [0-9] and \w represents all word characters, including
ASCII letter, digit or underscore. By placing part of a regular
expression inside round brackets or parentheses, one can group
that part of the regular expression together. This allows to
apply a quantifier to the entire group or to restrict alternation to
part of the whole regular expression.

In this paper, we propose to use regular expressions
reversely as a data generation language (DGL) for test data
generation. Given a regular expression, a set of strings that
exactly match it will be generated. For example, /090-\d{4}-
\d{4}/ defines the pattern of the typical mobile phone numbers

in Japan. So 090-1234-5678, 090-2345-5432 can be generated
as instances of this pattern.

The standard regular expressions however are not sufficient
as a data generation language. In this work, we introduce
important extensions, such as sequential number, random
number, random dictionary sampling that make regular
expressions to be a powerful tool for generating realistic
datasets with meaningful content and probability distributions
that match the target database.

II. EXTENDED REGULAR EXPRESSION AS DGL

A. Data Types and Formats

In order to populate database, data should be carefully
formatted to data types supported by the underlying database
system. Instead of explicit data types, we introduce implicit
type and format inference. Data types to be considered are as
follows.

• Integer: numbers like 23000 are treated as integers by
type inference. We also support printf-like format such
as "%03d" for 001.

• Decimal: numbers like 0.24, 1.00 are regarded as
decimal with format “%.2f”

• Date: 2019-12-01 is inferred as date type with format
"yyyy-mm-dd" and 2019-12 is also valid date with
format "yyyy-mm".

• Time: 12:30:00 has a time type add format "hh:mm:ss",
and 12:30 is similarly a time of format "hh:mm".

• Datetime: 2019-12-01 12:30 is a dateime of format
"yyyy-mm-dd hh:mm"

String is the default data type whenever other data types
cannot be correctly inferred.

B. Primitive Generators

The most important extension to regular expressions for
data generation is the introduction of primitive generators.

1. Sequential number generator

A sequential number generator (or sequential generator)
produce arithmetic sequence to support identifiers as in most
database systems. A sequential number generator is defined as
follows.

 range(min, max, step=1) (1)

Identify applicable funding agency here. If none, delete this text box.

It has three arguments where min and max specify the range
from which a number is generated. The third is the step to get
next number, 1 by default. Based on min and max, type and
format inference will decide a type and/or format for the
numbers to be generated. For example,

range(1,255) outputs 1,2,3,4,…,255

range(001,255) outputs 001, 002, 003,…, 255

range(‘2019-1-1’,’2019-8-31’, 7) outputs

2019-1-1, 2019-1-8, 2019-1-15, …

This is useful in the case when format is important. We will
give more examples for type/format inference.

2. Random number generator

A random number generator (or random generator) is
similar to sequential generator except that numbers are
generated uniformly at random or follow some statistical
distribution. A random number generator can be any of the
following forms.

random(min, max, dist=0) (2)

There are three arguments where min and max define the
range from which a number is generated. The third argument
specifies a distribution by ID:

0: uniform distribution (default);

1: normal distribution;

2: exponential distribution;

3: Poisson distribution;

4: Zipfian distribution.

Based on min and max, type and format inference will
decide a type and/or format for the numbers to be generated.
For example,

random(1, 255) outputs 57, 2, 124,

random(001, 255) outputs 057, 002, 124,

random(‘9:00’, ’12:10’) outputs 10:24, 11:30, 9:40, …

Another form of random generator is a step function
defined as.

 random((3)

 [min_1, max_1] : prob_1,

 [min_2, max_2] : prob_2,

 :

[min_n, max_n] : prob_n,

)

With probability of prob_i, a number is drawn from [min_i,
max_i], here prob_1+prob_2+…prob_n = 1. For example,

random(

 [0, 59]: 0.3,

[60, 69]: 0.2,

[70, 79]: 0.25,

[80,100]: 0.25

) outputs 74, 23, 89, 66, 95, …

3. Random sample generator

A random sample generator (or sample generator) is a more
general and powerful generator which takes any sets as input,
instead of ranges as in random generator of formula (3).

random((4)

 set_1: prob_1,

 set_2: prob_2,

 :

 set_n: prob_n

)

Here with probability prob_i, a number is drawn from set_i,
(i=1, 2, 3, …), here prob_1+prob_2+…prob_n=1. For
example,

random(

 [S]: 0.10,

 [AB]: 0.35,

 [C]: 0.40,

 [DE]: 0.15

)

 outputs A, C, B, S, D, B, …

C. Dictionaries

In standard regular expressions, only ASCII characters can
be used so text strings are limited to meaningless random
strings. We introduce dictionaries as a new source of
vocabulary. A dictionary is simply a named list of strings. For
example,

Color: red, green, blue, yellow, pink, gray, white, black,…

FamilyName: Stewart, Morgan, Trump, Bush, Scott, …

GirlsName: Lucy, Lily, Sophia, Isabella, Oliva, Alice, …

BoysName: James, Oliver, Benjamin, Jackson, Henry, …

 StateName: Arizona, California, Florida, Illinois, Iowa, …

 StateAbbr: AZ, CA, FL, IL,IA, KY, MD, …

Dictionaries are objects maintained externally in databases
or files and can be referenced by Dict wrapper, for example,
Dict.Color, Dict.FamilyName. Dictionaries can be imported by
wrapping the values in an existing database, which is useful in
generating foreign keys in a table.

In regular expressions, dictionaries are used with the
reference mechanism to be described in the next section.

D. References

One limit of regular expressions is that its vocabulary is
restricted. It is desirable to include dictionaries from outside.
To this end, we introduce references to predefined dictionaries.
The following symbols in a regular expression are used as
references to predefined dictionaries.

%1 ~ %9, %a ~ %z

The following regular expression defines a list of names with
birthdays.

/(%1|%2) %3 , %a/

 %1 := Dict.BoysName

 %2 := Dict.GirlsName

 %3 := Dict.FamilyName

 %a := random(

 '1980-1-1',

 '1999-12-31'

)

 will output:

 Douglas Mitchell, 1982-4-3

 Jennifer Stewart, 1990-3-14

 Ernest Morgan, 1984-7-4

 Isla Scott, 1999-1-15

 Jessica Simmons, 1988-6-8

 Sophia Moore, 1998-4-17

 Susan Smith, 1997-5-1

In this example, last names are given by (%1|%2), resulting
in a union of boy’s names and girl’s names. Using sample
generator, we can decide the probabilities for boy’s names and
girl’s names to be included. This is also known as prob union
as in [2]. For example,

 /%a %b/

 %a := Dict.FamilyName

 %b := random(

 %1: 0.35,

 %2: 0.65

),

 %1 := Dict.GirlsName

 %2 := Dict.BoysName

will take more boy’s names than girl’s names to generate
names. Note that (%1|%2) is equivalent to random(%1:
0.5, %2: 0.5).

Reference is a powerful tool for populating database with
reference constraints where foreign keys are generated with

reference to keys in existing tables. We will describe this in
details in the section.

III. CASE STUDY: GENERATING TPC-H BENCHMARK

To demonstrate the capability of the proposed DGL, we
describe how to use it to populate the database of TPC-H
benchmark[17]. The TPC-H benchmark proved to be
successful in the decision support area. Many commercial
database vendors and their related hardware vendors used these
benchmarks to show the superiority and competitive edge of
their products. TPC-H consists of separate and individual
tables (the Base Tables) and relationships between columns in
these tables. The data types in TPC-H include Identifier,
Integer, [Big] Decimal, Fixed text, Variable text, Date, all can
be easily translated into DGL data types.

1. Using Dictionaries in TPC-H

TPC-H uses a few dictionaries for generating meaningful
text strings. For example,

P_TYPE is a combination of words from three dictionaries
as follows: PartSize={Standard, Small, Medium, Large,
Economy, Promo}, PartCoat={Anodized, Burnished, Plated,
Polished, Brushed} and PartMaterial={Tin, Nickel, Brass,
Steel, Copper}. The following regular expression defines
values for P_TYPE:

 /%1\s%2\s%3/

%1:=Dict.PartSize

%2:=Dict.PartCoat

%2:=Dict.ParMaterial

The output will be strings like ‘Small Plated Brass’,
‘Economy Burnished Copper’.

P_CONTAINER is generated by the concatenation of
syllables selected at random from each of the two lists and
separated by a single space. ContainerSize={SM, Med, Jumbo,
Wrap}, ContainerType={Case, Box,Jar, Pkg, Pack, Can,
Drum }. The following regular expression defines values for
P_CONTAINER:

 /%1\s%2/

%1:=Dict.ContainerSize

%2:=Dict.ContainerType

The output will be strings like ‘Med Can’, ‘Wrap Jar’.

2. Populating Tables in TPC-H

 It is very easy to define single values for individual
columns in TPC-H tables. By reference and dictionary
mechanisms in the proposed DGL, it is also possible to
generate inter-table dependencies between columns with
respect to foreign keys. In this following, we show the table
definition with DGL expressions for each column and
relationship between tables.

a. PART Table (SF: Scaling Factor)

 P_PARTKEY: identifier, range(1, SF*200000)

 P_NAME: variable text, size 55, /\w{10,55}/

 P_MFGR: fixed text, size 25, /\w{25}/

 P_BRAND: fixed text, size 10, /\w{10}/

 P_TYPE: variable text, size 25, /%1\s\2\s%3/,

%1:=Dict.PartSize, %2:=Dict.PartCoat, %3:=Dict.
PartMaterial

 P_SIZE: integer, random(1,100)

 P_CONTAINER: variable text, size 10, /%1\s\2/

%1:=Dict.ContainerSize, %2:=Dict.ContaienrType

 P_RETAILPRICE: decimal, random(0.00, 10000.00)

 P_COMMENT: variable text, size 23 , /\w{1,23}/

 Primary Key: P_PARTKEY

b. SUPPLIER Table

 S_SUPPKEY: identifier , range(1, SF*10000)

 S_NAME: fixed text, size 25, /\w{25}/

 S_ADDRESS: variable text, size 40, /\w{10,40}/

 S_NATIONKEY: Foreign Key to N_NATIONKEY,
Dict.NationKey

 S_PHONE: fixed text, size 15, /%1-%2-%3-%4/

%1:=random(1,999), %2,%3:=random(100,999), %4
:=random(1000,9999),

 S_ACCTBAL: decimal, random(100.00, 100000.00)

 S_COMMENT: variable text, size 101, /\w{1,101}/

 Primary Key: S_SUPPKEY

c. PARTSUPP Table

 PS_PARTKEY: Identifier Foreign Key to P_PARTKEY

Dict.P_PARTKEY

 PS_SUPPKEY: Identifier Foreign Key to S_SUPPKEY

Dict.S_SUPPKEY

 PS_AVAILQTY: integer, random(1,10000)

 PS_SUPPLYCOST: Decimal, random(0.00, 100000.00)

 PS_COMMENT: variable text, size 199 , /\w{1,101}/

 Primary Key: PS_PARTKEY, PS_SUPPKEY

random(

 %1: 35%

 %2: 65%

),

%1:=Dict.P_PARTKEY, %2:=Dict.S_SUPPKEY

The above definition describes the probabilistic correlation
between foreign keys with 35% from PART and 65% from
SUPPLIER. The skewness is an important factor in evaluating

join performance[7]. As pointed in [5], while uniform data
distributions were a design choice for the TPC-D benchmark
and its successor TPC-H, it has been universally recognized
that data skew is prevalent in data warehousing. A modern
benchmark should therefore provide a test bed to evaluate the
ability of database engines to handle skew. The proposed DGL
is suitable for generating data with skews.

IV. IMPLEMENTATION

To implement the proposed DGL for data generation, a
system should consist of the following components (Figure 1).

Figure 1. System architecture for DGL implementation

RegExp parser takes a regular expression as input, analyzes
its syntax structure and builds a sequence of elements in the
form <character_set, repetition>.

 Type/format inference determines the data type, such as int,
float, date, time, and format of instances to be generated by
analyzing the literals given in the arguments. For example, 000
implies an integer type in the form of %03d (as defined in
printf of C). That is, integer of fixed size 3 padded with leading
0s if necessary.

Sequential number generator is used for generating
arithmetic sequences where the difference between one term
and the next is a constant. It is useful for identifiers
systematically.

Random number generator is used for generating random
numbers, which can be uniformly distributed over the range, or
following some statistical distribution, such as normal
distribution, exponential distribution.

Random sample generator plays a crucial role in combining
instances from multiple sources. In the simplest case, it
produces samples from a set or a dictionary. When specifying

The instance generator plays a central role in generating
synthetic data. There are two methods for regular expression
matching: non-deterministic automaton (NFA) and
deterministic automaton (DFA). In regular expression
matching by sequential calculation, it is often more efficient to
use DFA to determine whether or not to match. However, the

Instance

Generator

Sequential

Number

Generator

Random

Sample

Generator

Dictionary

ReqExp

Parser

Type/Format

Inference

Random

Number

Generator

number of states of DFA may be exponential times the number
of states of NFA corresponding to the same regular expression,
and in that case, it is more efficient to use NFA.

Figure 2 Regular expresion and gemeralized NFA

In NFA and DFA, one transition is made for each input
symbol. A computer model that relaxes this restriction is the
extended nondeterministic finite automaton (GNFA). In GNFA,
each state transition is an NFA corresponding to an arbitrary
regular expression. GNFA reads multiple characters at once
from the input, but the string corresponds to the regular
expression attached to the transition (edge). GNFA can be
easily converted to regular expressions. The conversion
converts intermediate transitions into regular expressions, and
finally makes a single transition from the starting state to the
accepting state (Figure 2). Similarly, the regular expression
added to each GNFA transition can be converted to NFA by
adding intermediate states until it is decomposed into single
characters.

Table 1 Regular expresion and gemeralized NFA

 RegExp Caching DB Caching

TT Yes Yes

FT No Yes

TF Yes No

FF No No

V. PERFORMANCE EVALUATION

To improve the efficiency of data generation, it is effective
to use caching technology. (1) Sub-automata and partial regular
expression caching, and (2) DB caching can be expected to
improve data generation efficiency.

(1) Sub-automata and partial regular expression caching

To reduce the cost of parsing (compiling) regular
expressions, caching the internal form once compiled is more
time efficient. Each regular expression can be associated with a
compiled form, saving the cost of the compilation process.

(2) DB caching

The cost of dictionary sampling, that is sample extraction
from user-defined character classes can be reduced by DB
caching. Although the DBMS standard caching technology can
be used, it is necessary to shuffle the cache data so that the
same result is not obtained each time the cache is used.

The evaluation experiments were conducted to evaluate the
efficiency of the two caches. The evaluation targets are shown
in Table 1. The change in execution time was examined
depending on whether the regular expression analysis result
cache (RegExp Caching) and the database cache (DB Caching)
were used.

Figure 3 Performance results of caching schemes

Figure 3 shows the experimental results. Regular
expression analysis uses the PHP package ReverseRegex[24].
The execution time is the average of 10 repetitions. It was
shown that the use of a DB caching is more efficient than
RegExp caching in reducing execution time.

VI. CONLUDING REMARKS

In this paper, we have proposed a regular expression-base
DGL for database generation that can generate random data
according to probability distribution and realistic pseudo data.
Values with some patterns, such phone numbers, zip codes for
individual columns can be defined using regular expressions.
By introducing type/format inference, dictionary and the
extended reference mechanism , various kinds of meaningful
pseudo data can be generated.

We have demonstrated the strength of the proposed
language by showing how to specify and populate database of
TPC-H benchmark. We showed that our DGL can specify data
values for all single columns as well as relationships between
tables that satisfy foreign key constraints. Moreover, it is also
capable to generate inter-table correlations with skew, which is
essential in performance evaluation of join operations. In
addition, the performance improvement by the cache was
considered and verified by preliminary experiments.

The future work includes automatic generation of regular
expressions from example data, where regular expressions for
synthetic data can be learned from positive instances. This is
important for privacy-preserved data mining where real data
cannot be obtained directly.

REFERENCES

[1] Adir , R. Levy , T. Salman, Dynamic test data generation for data

intensive applications, Proceedings of the 7th international Haifa
Verification conference on Hardware and Software: verification and
testing, December 06-08, 2011, Haifa, Israel

[2] N. Bruno and S. Chaudhuri. Flexible database generators. In
Proceedings of the 31st international conference on Very large data
bases (VLDB), pages 1097-1107, 2005.

[3] T. S. Buda, T. Cerqueus , J. Murphy , M. Kristiansen, VFDS: An
Application to Generate Fast Sample Databases, Proceedings of the 23rd
ACM International Conference on Conference on Information and
Knowledge Management, November 03-07, 2014, Shanghai, China

[4] R. Cox Regular Expression Matching can be simple and fast (but is slow
in Java, Perl, PHP, Python, Ruby, ...), (January 2007)
https://swtch.com/~rsc/regexp/regexp1.html

[5] A. Crolotte, A. Ghazal (2012) Introducing Skew into the TPC-H
Benchmark. In: Nambiar R., Poess M. (eds) Topics in Performance
Evaluation, Measurement and Characterization. TPCTC 2011. Lecture
Notes in Computer Science, vol 7144. Springer, Berlin, Heidelberg

[6] R.A. DeMillo, A.J. Offutt. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering. 19: 640.
September 1991

[7] D.J. DeWitt, J. F. Naughton, D. A. Schneider, S. Seshadri.: Practical
Skew Handling in Parallel Joins. In: Proceedings of VLDB 1992, pp.
27–40 (1992)

[8] M. Douglas McIlroy, Enumerating the strings of regular languages,
Journal of Functional Programming 14 (2004), pp. 503–518

[9] A. Dries, Declarative Data Generation with ProbLog, in Proc. of the
Sixth International Symposium on Information and Communication
Technology (SoICT 2015), pp/17-24, 2015

[10] D. C. Ince, The automatic generation of test data, Comput. J., 30, 63-69
(1987).

[11] Lo, E., Cheng, N., Lin, W. W., Hon, W. K., & Choi, B. MyBenchmark:
generating databases for query workloads. The VLDB Journal—The
International Journal on Very Large Data Bases, 23(6), 895-913,2014

[12] Hoag, Joseph E., and Craig W. Thompson. A parallel general-purpose
synthetic data generator. Data Engineering. Springer, Boston, MA, 2009.
103-117.

[13] Korel. A Dynamic approach of automated test data generation.
Conference on Software Maintenance. (1990)

[14] K. Pan , X. Wu , T. Xie, Generating program inputs for database
application testing, Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, p.73-82,
November 06-10, 2011

[15] K. Pan, X. Wu, T. Xie, Automatic test generation for mutation testing on
database applications, Proceedings of the 8th International Workshop on
Automation of Software Test, May 18-19, 2013, San Francisco,
California

[16] R. Pargas,M. Harrold, R. Peck. Test Data Generation using Genetic
Algorithms. Journal of Software Testing, Verification and Reliability. 9:
263–282 (1999)

[17] M. Pöss, C. Floyd, New TPC Benchmarks for Decision Support and
Web Commerce, SIGMOD Record, 29(4): 64-71, 2000

[18] M. Rabin and Dana Scott, Finite automata and their decision problems,
IBM Journal of Research and Development 3 (1959), pp. 114–125.

[19] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A data generator for
cloud-scale benchmarking. In Proceedings of the Second TPC
technology conference on Performance evaluation, measurement and
characterization of complex systems (TPCTC), pages 41-56, 2011.

[20] Rabl, Tilmann, et al. Just can't get enough: Synthesizing Big Data.
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015.

[21] K. Taneja, Y. Zhang, and T. Xie. Moda: Automated test generation for
database applications via mock objects. In Proc. IEEE/ACM
International Conference on Automated Software Engineering (ASE
2010), short paper, 2010.

[22] K. Thompson, Regular expression search algorithm, Communications of
the ACM 11(6) (June 1968), pp. 419–422.
http://doi.acm.org/10.1145/363347.363387

[23] X. Wu, Y. Wang, S. Guo, and Y. Zheng. Privacy preserving database
generation for database application testing. Fundam. Inf., 78(4):595-612,
Dec. 2007.

[24] ReverseRegex： Use Regular Expressions to generate text strings
https://github.com/icomefromthenet/ReverseRegex

