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Abstract. In this paper, we propose a novel approach to enhancing web proxy caching,
an approach that integrates content management with performance tuning techniques. We
first develop a hierarchical model for management of web data, which consists of physical
pages, logical pages and topics corresponding to different abstraction levels. Content
management based on this model enables active utilization of the cached web contents.
By defining priority on each abstraction level, the cache manager can make replacement
decisions on topics, logical pages, and physical pages hierarchically. As a result, a cache
can always keep the most relevant, popular, and high-quality content. To verify the
proposed approach, we have designed a content-aware replacement algorithm, LRU-SP+.
We evaluate the algorithm through preliminary experiments. The results show that content
management can achieve 30% improvement of caching performance in terms of hit ratios
and profit ratios (considering significance of topics) compared to content-blind schemes.
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database

1. Introduction

Caching is generally used in all distributed information systems to reduce network
traffic and improve response time for end users. Particularly, caching is important
in the World Wide Web since data and the number of users on the web are
increasing exponentially, far outpacing the increase of network bandwidth. Recent
study shows that data on the web in 1999 has increased four times (partially due
to creating mirror web pages and automatic generation of data) compared with
the previous year (Lawrence and Giles, 1999), whereas the network bandwidth
increased only twice (Nielsen, 1998). To reduce the amount of traffic on the
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net, to reduce server load and to speed up data access, popular and often-used
documents should be cached at local machines (Aggarwal et al., 1999; Barish and
Obraczka, 2000).

Most concepts for web caching are taken from other aspects of computer
and network design. Modern CPUs have caches for access to and from memory.
Modern operating systems have buffer caches for access to/from disks. Distributed
file systems have caches for data access between clients and servers. However, web
caching, particularly shared proxy caching, differs from its predecessors in several
ways. First, web caches, particularly the shared proxy caches, are usually very
large in size, up to tens or hundreds of gigabytes. This is in contrast to the caches
used in operating systems where cache size is small and data is kept for a relatively
short period of time. Since proxy cache can be large and is a shared information
repository, it can be seen as a warehouse of web documents, where people can
share each other’s findings and efforts. However, a cache is conventionally used
just in a passive way where access patterns of users are independent of the cache.
The web is highly open, dynamic, and less structured in nature, and therefore it is
laborious for people to locate relevant and high-quality information. To improve
the utilization of cache contents and to facilitate information sharing between
like-minded people, the cache contents need to be well organized.

Secondly, and perhaps most importantly, the users of a web cache are people
with special information needs. Information needs represent the contents that
users would like to access. For example, users who want to learn more about
research into ‘usability’ would access documents pertaining to something like
human–computer interfaces, user-centered design, etc. Users with similar infor-
mation needs tend to access a similar set of web documents, while users with
completely different information needs would rarely share information with each
other. Therefore, information needs based on contents of web documents are a
key factor in web-caching systems.

However, caching schemes developed so far are primarily based on the past
usage of data, such as how often the data has been accessed, to predict the
access pattern in the future (Cao and Irani, 1997; Williams et al., 1997; Wooster
and Abrams, 1997). To do this, however, each object should be kept in cache
for a period of time before one can tell whether it should continue to stay. For
example, in an LRU (least recently used) caching scheme, each object may stay
in cache until it becomes the least recently used object. Usage-based schemes
are dominant in traditional caching because additional information other than
usage is not directly available to the cache managers and the time scales allowed
in those systems are so narrow that it is unrealistic to implement complicated
algorithms to analyze the system’s behavior.

We have noticed the importance of exploiting other factors, especially seman-
tic information, in cache management. In Cheng and Kambayashi (2000a), we
proposed a constructive approach for design and analysis of advanced cache re-
placement policies, in which a cache agent consists of a central cache and multiple
unit caches. Contents of a web cache (retrieved web documents) are managed in
different unit caches according to a set of classification rules based on semantic
information in documents. For example, if a document D is from Japan and the
content is about baseball, type is picture and size is bigger than 24 kB, then
keep D in unit #u. In Cheng and Kambayashi (2000c), we discussed the issue of
content management for web caching, and proposed a multicache-based archi-
tecture to meet this need. This is the first study that suggests integrating content
management with performance-tuning techniques. Despite these efforts, however,
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semantic information in these schemes play a small role, and are only used in
classification rules, while neither central caches or unit caches (or subcaches) are
virtually content-blind.

In this paper, we present a new approach to enhancing proxy caching based on
techniques of content management. We first propose a hierarchical model for web
contents, consisting of physical pages, logical pages and topics. We then develop
searching and topic navigation facilities for users to quickly find what they would
be interested in. Furthermore, by defining priority on topics, logical pages, and
physical pages respectively, the cache manager can make replacement decisions by
choosing for replacement the candidate topics, logical pages, and physical pages
hierarchically. As a result, the cache always keeps the most relevant, popular
as well as high-quality content. We verify the proposed scheme by developing a
content-aware caching algorithm, namely LRU-SP+. We evaluate our scheme in
terms of hit ratio (HR) and profit ratio (PR) taking into account the differences
in popularity of the topics of pages. The results show that LRU-SP+ generally
performs 30% better than the content-blind scheme.

The remainder of this paper is organized as follows. Section 2 describes the
hierarchical model and system architecture to facilitate the management and utiliz-
ation of web contents. Section 3, discusses active access to cached web contents
through indexing and categorization. In Section 4, we present a content-aware
replacement algorithm for proxy caching, namely LRU-SP+. In Section 5, we
discuss the advantages and disadvantages of the proposed approach. We exper-
imentally evaluate LRU-SP+, comparing it with LRU-SP and another baseline
algorithm, LRV (least relative value). Section 6 briefly reviews related work.
Section 7 concludes this paper and describes several directions of future work.

2. A Hierarchical Model for Content Management

Conventionally, contents of a cache are primarily managed as physical data using
very simple data structures such as priority queue with or without a hash table.
Web data, however, are multimedia hypertext, and the hyperlink structure of
web documents determine how users will navigate the information space. To
exploit this feature in cache management, web data should be well organized
according to a well-designed model. Borrowing the basic data-modeling concepts
from database systems, in this section we introduce a hierarchical model for web
data to facilitate content-aware cache management and content utilization. The
major goal is to support different abstraction of web data so that both cache user
and manager can efficiently utilize the content-rich web data.

2.1. The Hierarchical Model for Web Data

As shown in Fig. 1, the three-tier model consists of (1) physical pages, single
physical files, (2) logical pages, sets of physical files linked or embedded together
as a semantic unit, and (3) topics: grouped logical pages relevant to the same
subject. Each abstraction level corresponds to a different use case.

Physical pages, also known as web objects, are single physical files that can
be identified by their URLs. A physical page can either be a normal HTML file
or an embedded media file used as a component of a web page. All web-caching
policies developed so far deal only with physical pages and replacement decisions
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Fig. 1. Hierarchical model for content-aware cache management.

are primarily based on past usage and other physical properties, for example,
frequency or recency of usage, size, and type of object files.

Logical pages are built upon one or more physical pages. We distinguish two
kinds of logical pages: the basic logical pages and coupled logical pages. A basic
logical paper is composed of a physical page together with its all embedded
media components, if any. A coupled logical page consists of multiple directly
linked and closely related basic logical pages: for example, a hypermedia article
with one index page and several component basic logical pages, which should be
viewed as a single logical unit. A logical page is a suitable information unit for
searching and classifying. The idea of using linked pages as an information unit is
from Li and Wu (1998), where a query can be evaluated even when queried terms
are scattered across several linked pages. Since determining coupled logical page
may be computationally complex, currently we only consider the basic logical
page in the rest of the paper.

A topic is a higher-level abstraction of web data than logical pages. A set
of logical pages relevant to a topic form a topic. Logical pages are categorized
based upon various features such as keywords, home server, and language. Well-
organized topics support navigation of the cache contents. For example, if a user
is interested in ‘usability’, research, he/she can navigate the corresponding topic
for information of interest. A topic may consist of a number of logical pages,
while a logical page can also join into more than one topic depending on the
categorization.

Similarly, a logical page consists of one or more physical pages. A physical
page can belong to multiple logical pages. For example, a navigation panel may
appear in a fixed position in many logical pages. A logical page will disappear
with the last constituent physical page being deleted. A topic, however, will still
exist even if it has no logical pages.

2.2. Implementation of the Hierarchical Model

The hierarchical model has built a conceptual framework for efficient management
of web contents. To implement this model, we develop an architecture that enables
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Fig. 2. Architecture for implementation of the hierarchical model.

active access to cache content and supports content-aware cache management. The
architecture, composed of three managers corresponding to different abstraction
levels, is illustrated in Fig. 2.

The physical page manager (PPM) acts as a simple cache manager, servicing
the incoming requests and maintaining the cached physical documents in a
priority queue. The logical page manager (LPM) is responsible for generating
and maintaining the set of logical pages. Since links are important metadata for
hypermedia documents, the logical page generator analyzes the link structure
for a set of linked documents, grouping those with close linkage into a logical
page. Another task of the LPM is to maintain logical pages, defining priority
among different logical pages for cache replacement. Logical page replacements
are based on the reference history as well as the relevance between the page and
the topic cluster.

The topics manager (LPM) is at the highest abstraction level that classifies
logical pages into given topics, managing the priority between topics for cache
replacement, and providing a directory of cache content for people to navigate.
When it is necessary to replace some documents to make space for more potential
ones, the replacement begins with choosing a topic that is least popular/important
among all others.

In summary, the process of content management under this architecture can
be described as follows. When a physical page is retrieved from the original
server, the logical page generator is used to generate one or more logical pages,
if there are any. A topics classifier is then used to determine which category a
logical page should belong to. Conversely, to purge a document from the cache,
a candidate topic must be selected at first, then a logical page in this topic, and
finally one or more physical pages within this logical page can be sequentially
chosen. The content-aware cache management scheme to be developed later in
this paper is built upon the two basic operations described above, in addition to
definition of priority orders or replacement policies for all abstraction levels.

3. Indexing and Clustering of Web Contents

A large proxy cache is a repository of web content that not only costs much time
and network resources to download but also takes time and work for users to
discover. However, owing to the content transparency tradition of the buffering
paradigm, the content of cached web documents has not yet been well utilized.
On the one hand, performance of caching can hardly be further improved owing
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to the steady increase of storage capacity. On the other hand, a majority (above
60%) of web data is generally stored and replaced without any use, leading to a
heavy waste of system information resources (Rizzo and Vicisano, 1998). In this
section, we describe the content-aware support for users to actively make use of
the most valuable resources that are locally available from the cache storage. We
provide two facilities to this end: the search engine and the content directory,
based on up-to-date indexes.

3.1. Indexing of Cache Content

The TF/IDF (term frequency/inverse document frequency) is the most widely
used weighting scheme used for indexing documents in information retrieval
systems. In this scheme the weight of each term is computed and then the
documents are indexed based on the weights of these terms. Suppose t denotes
the term (i.e., keyword and/or phrase), d denotes a document, N denotes the total
number of documents, TFt,d (term frequency) denotes the occurrence of term t
in document d, and DFt (document frequency) denotes the number of documents
that contains term t. The inverse document frequency IDFt for term t and wt,d,
the weight of term t in document d, are defined as:

IDFt = log(N/DFt) + 1 (1)

wt,d = TFt,d · IDFt (2)

As we can see, this indexing method uses syntactical information rather than
semantics of documents. For example, if we rearrange order of words in a
document, then the resultant document may be scored as high as the original
one. This is inevitable unless more semantic information is used in evaluating a
document.

Let keyword vector

q = ((t1, w1), (t2, w2), · · · , (tk, wk))

represent the information needs of a user, where, ti and wi (i = 1, 2, · · · , k) are
keyword and importance of the keyword respectively. wi ∈ {1, 2, 3}. Given q and
document d, and wti,d is the TF/IDF weight for keyword ti in document d as
defined in formula 2, we use cosine vector similarity formula to compute the
semantic distance (i.e., similarity) (Salton and Buckley, 1997).

similarity(d, q) =

∑k
i=1(wi · wti,d)√∑k

i=1(wi)2 · ∑k
i=1(wti,d)

2

(3)

We extend the basic scoring scheme by considering the popularity of a web
document. The popularity of a document can be judged by determining the
reliability (i.e., credibility) of the web document, how many other documents
create a link to this document, and how often it is accessed. We refine the above
formula as

score(d, q, RFd) = similarity(d, q) · eα(RFd−1) (4)

where RFd is the reference frequency of document d. α is a parameter and its
value lies between 0 and 1, both inclusive. The user can set α to adjust the impact
of the reference frequency. In the case α = 0, it becomes the naive-form similarity
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scoring. From (4), we can see that the weight of a document increases with RFd.
In the case that RFd = 1, we get

score(d, q, RFd) = similarity(d, q),

where score(d, q, RFd) simply measures the relevance of document d to query q.
However, when the document is proved to be popular and valuable (RFd > 1),
it becomes increasingly worthwhile to recommend it to users, so score(d, q, RFd)
> similarity(d, q).

3.2. Keyword-Based Searching

Searching is a means to make users aware of relevant contents in a cache that
are found and retrieved by other like-minded people. Searching as a new function
improves the utilization of cached web content while facilitating information
sharing among different users. Two kinds of searching are supported to facilitate
retrieval of information satisfying different needs of users.

Persistent searching is provided for filtering web documents in which a user
has persistent interest; for example, a researcher may have long-term interests
in new documents on his/her research topic. Persistent searching is a continuous
process to filter new documents for a specific user based on his/her user profile.
A user profile is a vector of keywords (with weightings) representing the user’s
information needs or interests:

p = (λ, δ, notification, url, email, · · · , q)
where q = ((t1, w1), (t2, w2), · · · , (tk, wk) represents the user’s information needs;
λ is a threshold for deciding whether a new document is close enough to be
selected. δ is the time interval in which the automatic searching will be performed.
notification is used to specify whether and how to notify the user of the search
results; it is a combination of one or more options from

{none, normal, when−updated, only−fresh, only−top−N, by−mail}
where url is the location in which to keep the search results and all documents
d with score(d, q, RFd) > λ will be returned. Both λ and δ are configurable
parameters. Thus, when one wishes the search results to be updated on a daily
basis, he/she can set δ = 24 (hours).

Ad hoc searching is supported for casually searching the content of a cache.
An agent is employed to mediate the search: if there are not enough results
returned from the proxy cache, the agent will choose a suitable search engine to
carry out the search, depending on the type of query the user issued.

3.3. Content Directory Based on Text Categorization

Content directory listing up-to-date resources of interest is a useful facility for
people working on or studying similar subjects. The content directory also plays
an important role in content-aware cache management because it corresponds to
the clustered topics.

The system maintains a general category that includes everything not suitable
in other categories. Privileged users can create new categories and train the
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classifier with example pages. Each category has a priority for determining the
order for cache replacement.

We implemented the classifier based on support vector machines (SVM), which
have proved very well suited for learning text categorization (Joachims, 1998; Tong
and Koller, 2000).

4. Cache Replacement Scheme Based on Hierarchical Content
Management

According to the hierarchical model, a logical page can be selected for replacement
only when it belongs to a candidate logical page, and this logical page is a member
of a candidate topic, that is, a topic with least priority. In this section, we describe
the content-aware extension to LRU-SP, a size-adjusted and popularity-aware
LRU caching algorithm we have proposed in Cheng and Kambayashi (2000b).

4.1. LRU-SP: A Replacement Algorithm for Physical Pages

LRU(least recently used) is the most extensively used caching policy. The basic
idea of LRU is that the more recently the data was used, the more possible it
will be used again in the near future. Hence, LRU tries to keep recently accessed
documents while replacing least recently used data to make space for new ones.
LRU performs well in most cases in traditional paging scenarios; however, it is
not suitable in the web context, since classical LRU cannot deal with varying
object sizes; also it does not make use of reference frequency, a strong predictor
of popularity. Thus, classical LRU should be extended to adapt the web context.

Size-adjusted and popularity-aware LRU (LRU-SP) is built upon one exten-
sion to LRU, namely, size-adjusted LRU (Aggarwal et al., 1999), which takes
into account varying object sizes. In LRU-SP, we further incorporate reference
frequency to differentiate the popularity of documents. The basic idea behind it
is that if one hit saves a unit of time and retrieval cost, then more hits should
reasonably save more units of time and cost. Thus, the benefit/size function of
document i is

RFi · 1

∆Ti,t · Si
where RFi is the number of references to document i, ∆Ti,t is the time since the
last reference to i, and Si is the size of document i.

To choose a document with least benefit, we re-index all documents in cache
in a non-decreasing order on values of (Si · ∆Tit)/RFi, then greedily pick the
highest index objects one by one and purge them from the cache until sufficient
space is made:

S1 · ∆T1t

RF1
6

S2 · ∆T2t

RF2
6 · · · 6

Sk · ∆Tkt

RFk
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Fig. 3. Cache replacement based on the hierarchical model.

4.2. Cache Replacement Policies Based on the Hierarchical Model

Figure 3 depicts the replacement process. The first-round choice for a replacement
begins from the topics. The least popular topics, for instance T4 and T5, will be
chosen to continue the next-round choice. The priority of each topic is based on
a predefined order in terms of group preference or other control policies. For
example, within a company, it is reasonable to give leisure or even sex topics
lower priorities to have more cache space for topics on work and business. This
mechanism provides us with a flexible topic-based control over the performance
of proxy caches.

Once T4 and T5 are decided, where we can choose to replace some logical
pages to make space, the next-round choice is a little complicated since choosing a
logical page from the selected topics requires a trade-off between a page’s relevance
to the topic and the popularity known so far. Equation (4) is an example of this
concern. Let the candidate logical page be, for example, {L3, L4, L5}.

Now, the remaining decision is straightforward, since we just need a traditional
caching policy applicable to most physical page contexts. As shown in Fig. 3,
the scope for cache replacement is restricted, that is, {P3, P4, P5, P6, P7}. Caching
policies that can be used in this case include LRU (least recently used), LFU
(least frequently used), size-adjusted LRU (Aggarwal et al., 1999) and any good
algorithms developed so far.

4.3. LRU-SP+: A Content-Aware Replacement Algorithm for Proxy
Caching

To verify the proposed approach, here we give a concrete algorithm that realizes
the ideas developed so far. We employ LRU-SP as replacement algorithm for
physical pages. The resultant algorithm, called LRU-SP+, makes replacement
decisions from topic selection to logical page, physical page selections. Algorithm
1 describes the process.

The following content management functions are necessary to implement
LRU-SP+:

• p2L(p) returns a set of logical pages that the physical page p belongs to.

• l2T (l) returns all topics that a logical page l belongs to.
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• t2L(t) returns all logical pages in topic t.

• l2P (l) returns all physical pages in logical page l.

In addition, we need some functions implementing priority queues on different
abstraction levels. get topic least(T ) is a function for selecting a topic with LEAST
priority in topic set T . get logical least(L) returns a logical page with LEAST
priority in set L. get physical least(P ) returns a physical page with LEAST
priority in set P . Let Ω be the set of all active topics in cache.

Algorithm 1 LRU-SP+ Content-Aware Replacement Algorithm

Require: space = unused cache space
1: for each request q for some physical page, p0 do
2: if p0 is in cache then
3: return a copy of p0

4: else
5: Retrieve p0 from origin server;
6: t0 = get topic least(Ω);
7: L0 = p2L(p0); {get the logical pages p0 belongs to}
8: T0 = ∪l0∈L0

l2T (l0); {Categorize logical pages to topics}
9: max priority = max{priority(t)|∀t ∈ T0}

10: if max priority > priority(t0) then
11: t = topic with max priority;
12: L = t2L(t);
13: while size(p0) > space and ¬empty(L) do
14: l = get logical least(L);P = l2P (l);
15: while size(p0) > space and ¬empty(P ) do
16: p = get physical least(P );
17: remove physical(p, P );
18: space+ = size(p)
19: end while
20: if empty(P ) then
21: remove logical(l, L);
22: end if
23: end while
24: LRU-SP(l0, p0); {cache p0 within l0}
25: end if
26: end if
27: end for

5. Performance Evaluation and Discussion

Content management enhances proxy caching with several important features.
The first feature is content-based cache control. The hierarchical management
of web data makes it feasible for administrators to control how cache resources
are used according to the content. For example, companies often desire to use
system resources in fast information retrieval related to their business, rather than
material on leisure and recreation. It is difficult to realize this control in traditional
caching schemes that only deal with physical pages. By our approach, it can simply
be done by creating a topic for that content and setting it a lower priority.
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Table 1. Profiles of trace datasets

Dataset Requests Bytes Corpus HRmax BHRmax

KAMB 873,824 23.6 GB 21.3 GB 0.251 0.098
NLANR 1,848,319 21.0 GB None 0.228 0.245

The second feature is active utilization of cache content. People often take
it for granted that caching can only function in the background and the access
patterns are independent of the cache’s existence. As cache content can only be
accessed passively and blindly without informing users what is available there,
caching performance will stay at a low level no matter how large the cache
size has been set and how ‘smart’ the replacement algorithm has been designed.
However, content management techniques introduced in this paper offer an extra
chance to improve caching performance by changing access patterns.

The third and most significant feature is enhanced replacement policies. Re-
placement policies such as LRU-SP+ can easily exploit knowledge of users’
interests specified through topic and topic priority and can be more smart that
replacement policies that are based only on analysis of past usage. In subse-
quent sections, we will experimentally evaluate this feature. In particular, we will
compare LRU-SP+ with other usage-based algorithms.

5.1. Experimental Model

First, in order to differentiate value of topics, we define significance factor for
each topic. A significance factor is a real number between 0 and 2. The most
significant topic is weighted 2. The default is 1. Instead of using byte hit ratio
(BHR), which measures the efficiency of caching in terms of the data size that
has been served by cache, we use another weighted hit ratio, namely profit ratios
(PR). Let ωi ∈ [0, 2] be the significance factor, di be the document corresponding
to the i-th request and N be the number of requests seen by the cache. Then

PR =

∑i=N
i=1 ωi × yi∑

i ωi

, yi =

{
1 if di in cache
0 otherwise

In addition, we also use hit ratio (HR) as in most caching schemes to evaluate
performance:

HR =

∑i=N
i=1 yi

N
, yi =

{
1 if di in cache
0 otherwise

We use the KAMB dataset, to be described in the next section, as input to drive
the simulator. The simulator is based on the architecture discussed in Section 2,
in which a new document (physical page) forms or is added to a logical page.
The logical page is indexed and clustered to one or more topics. The cache
management is based on LRU-SP+.
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Fig. 4. Reuse ratios of cached documents as a function of number of references.

5.2. Data Collections

5.2.1. Basic Profiles of Experimental Data

The dataset NLANR in Table 1 is a one-week top-level caching proxy trace and
is publicly available.1 This dataset contains 1,848,319 requests with a total of 21.0
GB of web data, where unique data is 15.9 GB with a maximum hit ratio 0.228
and byte hit ratio 0.245. Since, we can not get the web data corresponding to
NLANR access trace, we will unfortunately not perform topic analysis.

The KAMB dataset includes access logs as well as the corresponding web
data collected from the Squid proxy server in our laboratory. The logs keep all
of the 873,824 requests for a total of 23.6 GB of web data, where unique data is
21.3 GB in size. The maximum hit ratio is 0.251 and byte hit ratio is 0.098. The
possible reason for such a low byte hit ratio could be that the laboratory proxy
rarely sees repeated requests for large documents(larger documents may be saved
to avoid time-consuming downloading), whereas the NLANR proxy sees requests
from lower-level caching servers which may avoid caching larger documents, so
requests for larger documents go up to the NLANR proxy server.

5.2.2. Popularity Differences between Topics

In Table 2, we list the major topics to be considered according to the status of
the laboratory. The priority between topics is assigned based on significance and
the population interested in that topic.

5.2.3. Around 60% of Documents are not Reused

Our analysis found that most of documents are accessed only once over trace
period. Fig. 4 depicts how many documents will be reused in the future given
they have been used several times. P (i, j) is defined as allow:

P (i, j) =
‖Dj‖
‖Di‖ , (1 6 i < j)

where Di is the set of documents that has been accessed AT LEAST i times.
‖Di‖ is the size of the set. The P (i, j) defines the reuse ratio for a specific

1 ftp://ircache.nlanr.net/Traces
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Table 2. Topics and their priority(topic significance)

Topics Description Priority Weight

EDU Distance education 3 1.5
HCI Human machine interface 1 2.0
GIS Geographical information system 3 1.5
LOG Logic design 3 1.5
PRG Programming 1 2.0
LEI Leisure and recreation 3 1.0
OTR Other 5 0.5
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Fig. 5. Reference probability dependent on object sizes and recency of references.

set of documents. Note, D1 actually represents the whole set of documents in
consideration (all retrieved documents have been accessed at least once),). P (1, 2)
is the reuse ratio for all documents in consideration. 1 − P (1, 2) is the no-use
ratio, that is, how many documents are not reused since its first access. In dataset
NLANR, the no-use ratio is about 70% , while in KAMB it is near 75%! Even
when considering the margin errors (those which have been accessed before trace
beginning and those which will be accessed after trace finish), the no-use ratio
can still be above 60%! Thus, it is significant progress if we can make the best
use of this web data.

5.2.4. Access Frequency, Recency and Size are Useful Predictors

In addition, Fig. 4 also shows that the more frequently a document has been
used, the more possible it is that it will be used again in the future. The plots of
P (i, i+ 1) go up quickly when the access time is less than 10, which means access
time is a strong predictor to future usage. Figure 5 (left) shows the correlation
between access probability and object sizes. It is noticeable that documents less
than 20 KB in the NLANR dataset are more likely to be accessed than in the
KAMB dataset. The distribution of sizes also shows some locality: objects below
a small threshold, say 10 KB, comprise a majority of accesses. Figure 5 (right)
shows the accumulative distribution of access probability versus recency of access,
indicating that the more recently an object is accessed, the more likely it will be
accessed more times in the near future.



Enhanced Proxy Caching with Content Management 215

5.3. Algorithms for Comparison

In our experiments, least relative value (LRV) (Rizzo and Vicisano, 1998) is used
as a baseline algorithm for comparison. The designers of LRV developed an
elaborate function handling various characteristics of web objects, such as object
size, access frequency, and recency. The content-blind LRV performs better than
most existing caching algorithms. An efficient content management scheme is
given to LRV, which classifies objects into a few groups according to their access
frequency. Objects in the first group are maintained using a unit caching policy
SIZE, whereas the remaining groups are FIFO lists. Final decisions are based on
LRV function. LRU-SP+ is compared with LRV, as well as LRU-SP, in terms
of hit ratios and profit ratios.

5.4. Results and Analysis

The experimental results under different datasets are shown in Fig. 6. The sub-
figures depict the hit ratios and profit ratios achieved when using trace dataset
KAMB as input. Both hit ratio, in terms of how many requests are satisfied by
the cache, and profit ratio, a weighted version of hit ratio by considering the
significance factor of topics, are significantly better than the baseline algorithm
LRV. LRU-SP+ also improves LRU-SP remarkably.

5.4.1. Topic-Based Priority Results in Higher Hit Ratios

First, LRU-SP+ performs about 20% better than LRV and nearly 10% better
than LRU-SP in terms of hit ratio, as shown in Fig. 6 (left). This is because in
our laboratory the selected topics are the major concerns of students and staff.
By giving higher priority to these topics, we can indeed keep almost all popular
content. Documents irrelevant to these topics are rarely accessed, and are less
likely cached due to the lower priority; even cached, they may quickly be replaced.
The topic-based priority guarantees popular content being cached long enough,
whereas less popular ones will not occupy cache space.

5.4.2. Significance Factor Guarantees Valuable Documents are Cached
Prior to Others

In terms of profit ratios, LRU-SP+ outperforms LRV by a factor of 30% or
so, as shown in Fig. 6 (right). This is reasonable because in our significance
factor assignment content with higher priority is assigned a relatively high profit.
This factor further enlarges the benefits obtained from the hit ratio. LRU-SP+
also improves LRU-SP in a similar way. The dash-dotted plot in Fig. 6 (right)
represents profit rates of LRU-SP. LRU-SP+ performs nearly 20% better than
LRU-SP in profit ratios.

6. Related Work

While a long list of web caching schemes have bee proposed in recent years, only
a few of them have discussed the explicit utilization of semantic information for
management of web documents. Bestavros et al. (1996) suggested using more
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Fig. 6. Experimental results.

application-level information including document content in cache management,
but they do not provide any ideas how to realize this. Rizzo and Vicisano (1998)
discussed several parameters that should influence the probability of re-access,
including the document’s source, client requesting the document, file type, etc.
They presented LRV (least relative value) based on an elaborate benefit/cost
function of access recency, frequency, and document size. A difficult task for
LRV is to estimate the probability of access to documents with only one access,
which represents nearly 60% of residents in cache (Rizzo and Vicisano, 1998).
They adopt a document size-based scheme to decide the probability of re-access
when an object has been accessed for the first time. Shim et al. (1999) propose
LNC-R-W3-U, a unified algorithm that combines cache replacement policy and
cache consistency policy. The replacement policy in LNC-R-W3-U is based on
LRU-K (Neil et al., 1993), an extension to LRU (least recently used) caching
policy where the cache decision is based on the last k accesses, in contrast to
LRU, which considers only the last one access.

Studies on large-scale caching as a solution to scale content delivery are
an active field of research. The LSAM proxy cache (Touch and Hughes, 1998)
is user-based content-aware ‘virtual cache’, using multicast push of related web
pages, i.e. automatically selected interest groups, to load caches at natural network
aggregation points. INTELSAT Internet Delivery System (IDS) (Chen et al., 1999)
is a content delivery system based on a warehouse–kiosk model, which provides
global access and Internet wormholes via a fleet of INTELSAT satellites. Web
content such as cacheable HTTP, FTP, and streaming objects are fetched or
pushed both actively and reactively into a central repository cache via intelligent
Web agents. Fresh objects are constantly sent via IP multicast reliably to registered
Kiosk caches. Distributed web caches in the kiosks offer content to their local
users directly with improved quality of service and less bandwidth cost.

7. Conclusion and Future Work

Proxy caches are extensively deployed as a major way to improve web perfor-
mance, and large proxy caches are increasingly important for efficient utilization
of web content and network resources. In this paper, we have proposed a frame-
work of a proxy caching where both users and cache manager are aware of the
content of web documents. From the cache users’ view of point, a large proxy
cache is a repository of web documents shared by a set of users. From the cache
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point of view, the content of web documents is collected by users with special
information needs; thus by extracting popular topics of this content, a cache can
predict the interests and needs of users and then make replacement decisions
based on this kind of knowledge. The main contributions of this paper are as
follows:

1. To the best of our knowledge, we have proposed for the first time using a
proxy cache as a shared information repository, rather than simply a collection
of physical data. A hierarchical data model was developed to exploit cache
content and its semantic information.

2. Based on this data organization, we have provided facilities for easily finding
useful information in the cache so as to maximize information sharing.

3. We also designed and implemented LRU-SP+, a content-aware algorithm for
web proxy caching.

Most importantly, in this paper, we are finding a new approach to incorporating
content management with performance tuning techniques. We believe that this
is a promising way to solve the problems caused by the exponential growth of
web size and Internet traffic. Also, some more experiments are required to verify
the scheme for computing content-based popularity, and it is also necessary to
develop facilities for using cache as a web warehouse to enable more active use
of cache content.
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