
A Semantic Model for Hypertext Data Caching

Kai Cheng1;2, Yahiko Kambayashi1

1 Department of Social Informatics

Graduate School of Informatics, Kyoto University

Sakyo Kyoto 606-8501, Japan

fchengk, yahikog@db.soc.i.kyoto-u.ac.jp
2 School of Computer, Wuhan University, Wuhan 430072, China

Abstract. In this paper, we propose a semantic model to capture the
semantic locality in hypertext access for client{side caching. To char-

acterize hypertext data from the perspective of clients, we de�ne a se-

mantic region as a cluster of semantically related logical documents. A
logical document is de�ned as a sequence of subsequently visited inter{

connected documents which in turn are composed of a container �le and

(optionally) a set of component �les. This model makes it easy to deal

with temporal locality, spatial locality and semantic locality in hypertext

access. To verify the proposed model, we use an experimental hypertext

system, called HyperDB. We generate a set of workloads and assess the
performance of a set of caching algorithms using the synthetic workloads

and the experimental hypertext system.

1 Introduction

Hypertext and hypermedia data has recently gained importance due to the suc-

cess of the world-wide web and hypertext transfer protocol (HTTP). A salient

feature of a hypertext system is that users search for desired data primarily

by navigation or following links from one document to another, while query

facilities, if any, are just used for pruning the navigation space [7]. The inter-

active nature of hypertext navigation poses challenges in system performance,

especially in a client/server architecture where downloading a document from

remote servers is much more time-consuming than reading from a local disk.

Caching has been widely used to alleviate performance bottlenecks in com-

puter architecture, network and database systems[19]. Particularly, caching that

utilizes computational and storage resources of the client machines has been a

key solution to achieve high performance and scalability in client/server database

systems [9]. Semantic caching is an advanced form of client caching suited for uti-

lizing client resources, which maintains a semantic description for cached data,

called semantic region, to capture the semantic locality of data usage [8]. Seman-

tic caching gives higher priority to data relevant to the frequently used data as

it believes those semantically related data are more likely to be accessed again

in the near future.

In a query{retrieval based database system, semantic description of cached

data can be straightly obtained from the formulas of query constraint. Taking as



an example from [8], suppose we want to �nd all employees whose salary exceeds

50,00 and whose age are at most 30 years old. We can issue a query using this

constraint formula Q1 = (Salary > 50; 000 ^ Age � 30). For caching of data

with explicit semantic description, one can easily make use of query results to

serve the subsequent query requests according to their semantic containment:

only the remainder of a query should be issued to get complimentary data.

In a navigation{based hypertext system, however, there is no explicit seman-

tic description altogether, instead the user expresses his information needs by

interacting with the system, i.e. repeatedly choosing new data while looking at

current data items [7]. As a result, caching of hypertext data cannot utilize the

explicit semantic description to capture semantic locality. Another problem for

caching hypertext data is that hypertext documents are inter{connected by hy-

perlinks and each document is also composed by a set of small components of

other media. To take advantage of the features, a suitable model is essential.

Modeling hypertext data has been well researched in hypertext community

[2,5, 10, 11, 13, 23]. Dexter model [11] identi�es the relevant abstractions found

in a wide range of existing hypertext systems, providing a common vocabulary

and its meaning in order to talk about hypertext systems. The Fundamental

Open Hypertext Model (FOHM) [13] expands the Open Hypermedia Protocol

(OHP) data model to describe a broader set of hypermedia "domains", such

as navigational domain, spatial domain and taxonomic domain, to meet the

requirements of interoperability between hypertext systems. The OHP proto-

col was always more concerned with navigational hypertext, whereas FOHM is

capable of expressing all three domains.

Hypertext abstract machine (HAM) [6] is an architectural description of a

general-purpose, transaction-based, multi-user server for a hypertext storage sys-

tem. Furuta and Stotts' Trellis model [21] is a formal speci�cation of hypertext

based on petri nets. Hypertext has also been formalized as graphs [22] or au-

tomata as in [14,17], where the authors studied the dynamic properties of hyper-

text in terms of \reader's experience", formalizing what readers see when they

interact with a hypertext system. Web machine [1, 12] or web automata [20] are

computation models for querying the web, which paid much attention to the

navigational nature of the web.

The afore{mentioned models, however, either aimed at facilitating authoring

activity and system design, or attempted to investigate computation mechanism

for designing suitable query languages. To capture temporal locality, spatial lo-

cality as well as semantic locality, we need a model that can handle structural

organization, browsing semantics as well as content relevance from the perspec-

tive of the user. As a client cache can only see a restricted fraction of the whole

hypertext system and as there is tradeo� between model complexity and asso-

ciated overhead, current work is not suitable for the caching purpose.

In this paper, we propose a new semantic model to capture the semantic

locality of hypertext data caching. We de�ne a semantic region in a cache as a

cluster of semantically related logical documents. A logical document is de�ned

as a sequence of subsequently visited interlinked documents, which in turn are



composed of a container �le and (optionally) a set of component �les. We verify

the proposed model by implementing an experimental hypertext database, called

HyperDB. We then generate a set of workloads and assess the performance of

a set of caching algorithms using the synthesized workloads and the simulated

hypertext system.

The rest of paper is organized as follows. Section 2 proposes the semantic

model. Section 3 describes a virtual hypertext database based on the proposed

model, called HyperDB as well as workloads with various kinds of locality of

reference for HyperDB. Section 4 gives a set of caching replacement algorithms

that take into account various forms of reference locality, describing simulation

results obtained under the synthetic workloads and the simulated hypertext

system. Section 5 concludes the paper and describes some future directions.

2 Modeling Cached Hypertext Data

Hypertext data is a collection of documents (or "nodes") containing cross-

references or "links" which, with the aid of an interactive browser program,

allow the reader to move easily from one document to another. The extension of

hypertext to include other media { sound, graphics, and video { has been termed

"hypermedia", but is usually just called "hypertext", especially since the advent

of the World-Wide Web and HTML.

In this section, we develop a semantic model by taking into account both

the structural as well as the semantic features of hypertext data. Particularly,

we de�ne the concept of semantic region for hypertext data caches. This model

characterizes a collection of data in a hypertext cache from three abstraction

levels: physical documents, logical documents, and semantic regions based on

physical structure, logical structure and semantic structure respectively.

a b c d

A

A

c (audio)

(textual content)

(image)
a b

(video)

Container

Components

Fig. 1. Document Composed by Hypermedia Components

2.1 Physical Structure of Hypertext Data

To capture the spatial locality of hypertext access, a cache should �rst under-

stand physical structure of hypertext documents, the basic elements in a hyper-

text system. We describe this feature mainly following the Dexter model [11].



First, document is a basic element of a hypertext system. We de�ne a (hy-

pertext) document as a composition of a container (�le) and (optionally) a set

of media component �les that represent media other than text such as image,

audio and video (Fig. 1). A container (�le) consists of (1) textual content, a

sequence of terms, sentences, paragraphs; (2) anchors and (3) hold places for

media components.

An anchor is a point in a document representing a start point for a link. An

anchor also speci�es a valid range or anchor text, indicating what part of a doc-

ument belongs to the anchor. Anchor texts often describe the linked document,

used as a navigation guide to the information the user is seeking for. The anchor

text of a is denoted by text(a). Anchoring provides a mechanism for addressing

locations within the content of a document.

Link is another basic element in a hypertext system. A link represents rela-

tions between documents. There are two kinds of links. A link from one anchor

to another anchor is called span-to-span link, while a link from one anchor to

a document is called as span-to-node link (Fig. 2). In the following, we only

consider span-to-node link, and represent a link as a triplet < d1; a; d2 >, where

a is an source anchor in document d1, d2 is a destination document of this link.

anchor2

Span−to−span link

anchor1

Span−to−node link

anchor1
link link

Fig. 2. Two Types of Link

Documents can be evaluated in terms of size, recency and frequency of refer-

ence. To measure the relevance of a document to some interested topics ( later

we call \semantic regions"), textual content (terms or sentences) will be eval-

uated on the basis of techniques in information retrieval (IR), such as vector

space model (VSM) and TF{IDF scoring scheme. The content of a document d

can be expressed as

contnentof(d) =< title; body >

where title is a sentence that describes the content of the document, and body

is a sequence of terms in the document. Media component (�les) are embedded

in the hold places of container �les. A media component �le can be shared by

one or more documents, thus whether a component �le can be deleted by a

garbage collector is determined by not only how often it has been used as in



most caching schemes, but also determined by whether there is no more used by

existing cached documents.

A hypertext database is often modeled as a directed hypergraph, with docu-

ments as nodes and links as edges. This model however is not suitable for client

caches because a client cache does not see the whole structure of the potential

hypergraph, instead what it can see are paths followed by the user in that hyper-

graph. To predict how the user uses the hypertext database for caching decision

making, we should model the paths that the user often traverses, instead of the

whole hypergraph.

2.2 Logical Documents: Logical Structure of Hypertext Data

As links created by hypertext authors do not always re
ect what readers think, a

cache often sees a subset of documents and a small fraction of paths (sequences of

document-links) are often traversed. In a navigational access environment, users

are apt to travel data items back and forth in accordance with paths. Thus, data

items might be visited just because of it location, rather than its content. We

de�ne a path frequently traversed by some users as a logical document.

A logical document is a representation of user's perspective of the hypertext

data. In other words, how authors created a hypertext database is one thing,

while what the client would be interested is another. This distinguishes our model

from any other hypertext models created from the point of view of hypertext

authors or system designers.

F

D

G HE

A

CB

1. [A, B, E]
2. [A, D, G]

1

6 1 11 1

137

Fig. 3. Logical Document Based on Repeating Traversal Paths

Fig. 3 depicts two logical documents in a hypertext database: one is \A{B{

E", the other is \A{D{G". In \A|D{G", starting from document A, the user

often (13 times) chooses to follow a link to D, then G. It is reasonable to think

that, for the user of the cache, \A{D{G" is a logical unit that contains speci�c

information he needs. The �rst document in the path of a logical document is

called an \entry document", while the last document traversed in the path is

called a \terminal document".



Logical documents can be measured in terms of size, recency, frequency of

reference. The size of a logical document is the length of path, which is indeed the

number of documents contained in the path. A reference to a logical document

is de�ned as a successful traversal starting from the entry document, walking

through a link to the second document on the path within a limited time interval,

and so on, until reaching the terminal document.

Logical documents represent the readers' viewpoint of hypertext data. That

is, di�erent paths leading to a same document imply di�erent perspectives of the

user, To deal with this di�erence, we de�ne the content of a logical document

to be < title; body > with title being the union of anchor texts contained in the

path and the title of the terminal document. As shown in Fig. 4, suppose we

Logical Document

 

text2

anchor1

title

Document2

Document3

Document1

text1

anchor2 Body

Body

(text1+text2+title)
Title

Logical Document1

Repeating Traversal Paths

Fig. 4. Link Navigations Imply Semantic Speci�city

have a logical document l =< [d1; a1]; [d2; a2]; [d3] > where d
i
(i = 1; 2; 3) are

documents in the repeating traversal path, a
i
(i = 1; 2) are anchors leading to

a subsequent document. That is, the user �rst follows a link from anchor a1 in

d1 to d2, where he follows another link from anchor a2 to d3. Let text(ai) be

the anchor text of a
i
, tile(d

i
) and body(d

i
) be the title and body of a document

respectively. Then we can de�ne the content of logical document L to be

contnentof(l
i
) < text(a1) + text(a2) + title(d3); body(d3) >

Here \+" is string concatenation operation as in a typical programming lan-

guage. For example, if the anchor texts on the path of a logical document are

\Travel in Kyoto", \List of bus stations" and \Kyoto station", and the title of

the terminal document is \Access to the Sinkansen superexpress", the the logical

document will have a logical title \Travel to Kyoto, List of bus stations, Kyoto

station, Access to the Sinkansen superexpress".

Note that logical documents can be of di�erent sizes depending on the con-

�guration of implementation and the actual usage status. A special case is when



the size is 1, which means there is only one document included in the logical

document. Thus, each visited document can a logical document.

2.3 Semantic Region: Semantic Structure of Hypertext Data

Semantic regions is a concrete description about user interests, which play an

important role in identifying preference of users. We denote a semantic region

as R = (�; �), where � is the semantic centroid (cluster center, or median). �

is the radius of the semantic region. A semantic region is a cluster of logical

documents with a semantic centroid such that each logical document belongs to

exactly one most suitable cluster, that is, it is closer to centroid of this cluster

than any others. The centroid of a cluster is represented using a feature vector

based on vector space model (VSM) and TF{IDF scoring scheme. For example,

(30, 34, 120, 10) is a feature vector presentation with respect to (bread, butter,

salt, knife).

<σ, λ>: 

λ

A semantic region R =

σ centroid  of the semantiic region
σ

λ: 

logical  document

radius of semantic region

Fig. 5. Semantic Region Based on Adaptive Clustering of Logical Documents

As new documents come continuously, determining semantic regions for hy-

pertext caching requires eÆcient single{pass clustering algorithms that consume

a small amount of memory. Fortunately, there exist a number of streaming{data

algorithms that can achieve high quality clustering [24, 4, 15]. In general, a clus-

tering problem cane be described as follows: given the number k of clusters, a

clustering algorithm will try to �nd k centroids so that each data point is as-

signed to the cluster de�ned by the centroid nearest to it. This is also known as

\k-Median" problem.

Suppose the quality of clustering is measured by the sum of square distance

of data points from their centroid, the randomized algorithm LSEARCH [15]

can usually �nd a near{optimum solution in O(nm + nk log k) of time, where

n is proportional to the number of data points, m is a small number. In this

work, we will not evaluate various clustering algorithms, instead we assume we

already know a suitable near{optimum algorithm that can always cluster new

logical documents received. We will concentrate on exploring whether higher{

level semantic information can help determine potential usage of hypertext data.



As content of a logical document has two parts: title and body, we need

a method to combine them together. As terms in a title are generally more

important than those in a body, we show stress more on title than on body.

Suppose L is the set of logical documents for a hypertext cache. l
i
is a logical

document with content < title; body >. Let vtitle
i

and v
body

i

be the TF{IDF based

feature vectors for title and body of l
i
respectively. The comprehensive feature

vector of l
i
can be calculated as a weighted sum of both, that is,

v
i
= ! � vtitle

i
+ v

body

i

Here ! is a parameter larger than 1. The combination of feature vectors for

title part and body part enable to distinguish two logical documents even when

they have the same terminal document. Again we consider the example about

\how to access to Sinkansen superexpress" in \Kyoto station". Another reader

may reference the same document after following a list of \NTTWestern Japan",

\Kyoto OÆce", \Location" , and then the terminal document. The �rst logical

document is likely for general travelers, while the second logical document is

much more suitable for business travelers.

3 HyperDB, Benchmarking Hypertext Semantic Caching

To verify the proposed model and to evaluate caching schemes with consideration

of temporal, spatial, and semantic locality, we set up an experimental hypertext

database system as a testbed. However, as mentioned before, currently we con-

centrate on evaluate semantic information derived according to our semantic

model can be a help in better cache management.

3.1 HyperDB, A Virtual Hypertext Database

We need not actually generate all these elements and not need to employ a hy-

pertext database management system to maintain it. We simplify the proposed

model because we need only to maintain a set of features that provide neces-

sary data for calculating logical documents, semantic regions. First, we can put

aside the real content of documents or logical documents, because dealing with

this feature we have to do much engineering work that has done by most IR re-

searchers. Then all calculation involved in content of documents can be omitted

for the time being.

We begin with generating a set of component �les, each of which has a

di�erent size and media type. We then generate a set of container �les, which

has a size and a corresponding set of component �les. In future, we will also

consider terms and their TF-IDF scores with respect to a container �le, but for

the time being, we need not such a complicated implementation.

1. a set of components Components, each element is a triplet of id, media type

and size.



2. a set of documents Documents, each of them has an id, a set of component

id's and a set of terms with their corresponding TF-IDF socres;

3. a set of logical documents LogicalDocuments, with a id, a sequence of linked

documents id's;

4. a set of semantic regions SemanticRegions, with a semantic centroid (a

vector of weighted terms), a threshold. ;

A logical document is generated by choosing a sequence of documents (con-

tainer �les indeed). Each sequence has a length of 1, 2, 3 etc, indicating there

is/are one or more documents.

3.2 Generating Accesses to HyperDB

For the hypertext database, we synthesize workloads. We use the following

method to guarantee temporal locality in request stream. To generate a new

request, we pick a random number and take di�erent actions depending on the

random number. If the number is higher than a certain constant �, a new re-

quest is issued. If the number is lower than �, we re-issue a request issued before.

Thus, � is the inherent hit ratio in the request stream.

Workload Property Description

Workload A Temporal Locality Revisit Recently Used Basic Objects

Workload B Spatial Locality Consider Document Composition

Workload C Spatial Locality Consider Link Structure

Workload D Semantic Locality Be Aware of Semantic Regions

Table 1. Properties for Synthesized Workloads

If we need to re-issue an old request, we choose the request issued t requests

ago with probability proportional to 1=t. To determine this t, we maintain a sum

S of 1=t for t from 1 to the number n of requests issued, that is S =
P

t=n

t=1
1=t.

Every time it is necessary to issue an old request, we pick a random number

from 0 to 1 (call it r), calculating r � S, and chooses t where,

i=t�1X

i=1

1=i < r � S <

i=1X

i=1

1=i

In essence, t is chosen with probability 1=(S � t) and the recently issued requests

are more likely to be re{issued. Temporal locality combined with hypertext struc-

tures and semantic regions, derives other kinds of reference locality, i.e. spatial

locality and semantic locality, where spatially related or semantically related

data items are more likely to be re{requested in a short period of time.



In the following, we apply this method in maintaining temporal locality at

component{level, document{level, path-level and semantics-level, obtaining four

groups of request streams. Table 1 lists the primary pro�les of these workloads.

The workload A is generated on the basis of reference locality for basic ob-

jects without considering structural or semantic locality. Workload B is based on

reference locality for documents, thus media components are accessed only when

their container �les are accessed for the �rst hand. Workload C is further based

on logical documents. The recently accessed logical document will be more likely

be re-accessed in the near future due to the temporal locality for logical docu-

ments. When a logical document is accessed, all member documents will with

very high probability be accessed and all component �les of those documents

will be accessed consequently

Finally, workload D is based on reference locality of semantic regions. When

a semantic region has recently been referenced (one of its member logical docu-

ment was referred), then similar logical documents in the same semantic region

are more likely to be reused in the near future. Within each semantic region,

the recently used logical documents are more likely to be reused. We call the

temporal locality for semantic regions as well as logical documents as \multiple

temporal locality".

4 Semantic Caching for HyperDB

Based on the semantic model developed so far, we can now design algorithms for

cache management. The baseline algorithm is LRU-K, proposed by E. J. O'Neil

et al in [16]. The basic idea of LRU{K is to keep track of �T
K
, i.e. time since

last K'th reference (or in�nitely large if there are no more than K references),

using this information to estimate the popularity of a data item. The K=�T
K

is usually called \dynamic access frequency" of a data item. A cache algorithm

will try to �nd the least frequently used data (with smaller access frequency)

and replace it with more popular data (with larger access frequency).

4.1 Size-Adjusted LRU-K (LRU-K-S)

As basic objects in hypertext databases are not identical in sizes, we should

extend LRU-K to deal with the heterogeneous sizes of hypertext objects. The

idea is to normalize miss penalty by data size, K=(�T
K
� Size), then use the

normalized cost function to measure the potential of a data item. Consequently,

we obtain a Size-Adjusted LRU-K (call it LRU-K-S).

4.2 Structure-Aware Caching (LRU-K-T)

Hypertext data has some structure where component data depend on container:

when a container data item was accessed, all its component data will automat-

ically be accessed. Conversely, when a container data item is replaced from a



cache, the related components should also be deleted except some are shared by

other containers.

So far, this kind of structure{based dependency has not been well addressed.

We extend LRU-K to incorporate this property, assuming that each compo-

nent �le maintains a reference counter, indicating how many documents are

currently sharing this component. Before the counter becomes zero, cache pri-

ority of this component depends on its container. When all its containers are

removed (counter becomes zero), the component �le will be deleted, similar to

the idea of \garbage collection" in memory management. In this way, we obtain

a Structure-Aware LRU-K (call it LRU-K-T).

Algorithm 1 LRU-K-C Content-Sensitive LRU-K

Require: space = unused cache space, 
 is a set of semantic regions

1: for each request q for data item, d0 do

2: if d0 is in cache then

3: return a copy of d0
4: else

5: Retrieve d0 from database;

6: P0 = getEmbedders(d0);

7: T0 =
S

p2P0

getSemanticRegion(p);

8: t0 = getLeastSemanticRegion(
);

9: t = getMostSemanticRegion(T0 );

10: if isPriori(t; t0) then

11: P = getDocuments(t);

12: while size(d0) > space and :empty(P ) do

13: p0 = getLeastDocument(P );

14: D = getEmbedded(p0);

15: while size(d0) > space

16: and :empty(D) do

17: d = getLeastObject(D);

18: removeObject(d;D);

19: space+ = size(d)

20: end while

21: if empty(D) then

22: removeDocument(p0 ; P );

23: updateCentroid(t)

24: end if

25: end while

26: LRU-K-S(p0, d0);

27: end if

28: end if

29: end for



4.3 Popular Path-Aware Caching (LRU-K-P)

Another extension to the standard LRU-K is making use of frequently traversed

paths, namely, logical document. Recall that logical document is a larger gran-

ularity for cache management. As we only care about links that has been used

at least once, we should not maintain a large collection of links. From the user's

perspective, a never{used link may be of little interest and will less likely to be

visited in the near future.

The times of last K traversals are recorded so that the \dynamic access

frequency" about this logical document can be calculated. Next time when the

user begin to visit a document at this path, cache manager will give higher

priority to those documents on the paths or logical documents that have been

\most recently and most frequently used". This is a Popular Path-Aware LRU-K,

called LRU-K-P.

4.4 Content-Sensitive Caching (LRU-K-C)

Finally, we reach the point to develop the semantic caching scheme. The semantic

region for navigational access is built upon document clustering techniques. First

let us de�ne some functions for managing priori ty queues on semantic regions,

logical documents, documents and basic objects (single physical objects/�les

including both containers and components).

{ getEmbedders(d) returns a all documents that embed the object d
{ getEmbedded(p) returns a all objects embedded in the document p

{ getSemanticRegions(p) returns all semantic regions that a document p be-

longs to

{ getDocuments(t) returns all documents in semantic region t
{ getMostSemanticRegion(T ) is a function for selecting a semantic region

with highest priority in a set T of semantic regions

{ getLeastSemanticRegions(T ) is a function for selecting a semantic region

with lowest priority in a set T of semantic regions

{ getLeastDocument(L) returns a document with LEAST priority in set P
{ getLeastObject(D), returns a object with LEAST priority in set D.

4.5 Experimental Evaluation

We assess the performance of the proposed algorithms using synthetic workloads

obtained in Section 3. Although most studies on caching algorithms use trace{

driven experiments or event{driven experiments [3], we choose in this work to

use event{driven approach for two reasons. First, to the best of our knowledge

there are no suitable benchmarks available for our purpose which include both

a collection of hypertext data and the workloads with respective to those data.

Second, our algorithms, especially content{sensitive caching, rely on techniques

in other research �elds, such as usage mining, text clustering etc. a thorough

evaluation of all speci�c techniques is diÆcult and we will address in future

work.



0 2 4 6 8 10

Percentage of Maximum Space Required (Workload A)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H
it 

R
at

io
s

LRU-K-S
LRU-K-T
LRU-K-P
LRU-K-C

Fig. 6. Hit Ratios under Workload A

0 2 4 6 8 10

Percentage of Maximum Space Required (Workload D)

0.4

0.45

0.5

0.55

H
it 

R
at

io
s

LRU-K-C
LRU-K-P
LRU-K-T
LRU-K-S

Fig. 7. Hit Ratios under Workload D

Fig. 6 shows results (hit ratios) of experiments under workload A, where no

spatial or semantic locality is considered. The plots show LRU-K-S is better

while others including LRU-K-C performed not so good. The reason is that the

structure{aware or semantic-aware algorithms try to bias towards documents

closer spatially or semantically to recently used ones, however, workload A lacks

of such characteristics. This can also explain the results in Fig. 7 under workload

D, where LRU-K-C performed better than others, since in workload D, logical

documents within a same semantic region tends to be referenced at the same

time.

5 Conclusion and Future Work

Semantic locality is the most important feature of data access, which has been ex-

ploited in semantic caching schemes for traditional query{retrieval based database

systems. However, for a navigation based hypertext database system, such as the

web, the advanced locality of reference has not yet been incorporated as there is

no explicit description of semantic regions in the form of access. In this paper, we

have proposed a semantic model that took into account both structural feature

as well as semantic feature of hypertext data. Our model is especially suitable for

navigational access to seeking desired data in a hyperlinked information space.

We veri�ed the proposed model by creating an experimental hypertext database

called HyperDB, then generated workloads with di�erent locality of reference.

These workloads can be used for analysis of semantic caching schemes for hyper-

text data. Preliminary experiments have done to evaluate some semantic caching

schemes.

Our future work is to include textual content and test for eÆciency under

a verity of clustering schemes and parameterizing the process for constructing

semantic regions.



Acknowledgments

The authors would like to thank Mukesh Mohania and Yanchun Zhang for many

interesting discussions.

References

1. Serge Abiteboul and Victor Vianu. Queries and Computation on the Web. In

Proceedings of 6th International Conference on Database Theory (ICDT'97), pages
262{275, January 8-10, Delphi, Greece, 1997.

2. Foto N. Afrati and Constantinos D. Koutras. A Hypertext Model Supporting
Query Mechanisms. In Proceedings of European Conference on Hypertext, pages

52{66, 1990.

3. Charu Aggarwal, Joel L. Wolf, and Philip S. Yu. Caching on the World Wide Web.

IEEE Transactions on Knowledge and Data Engineering, 11(1):95{106, 1999.

4. Paul S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling Clustering Algorithms
to Large Databases. In Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining (KDD-98), pages 9{15, New York City,

New York, USA, August 1998. AAAI Press.

5. Andrea Caloini. Matching Hypertext Models to Hypertext Systems: A Compilative

Approach. In Proceedings of European Conference on Hypertext, pages 91{101,

1992.

6. Brad Campbell and Joseph M. Goodman. HAM: A General Purpose Hypertext
Abstraction Machine. Communications of the ACM, 31(7):856{867, July 1988.

7. Chris Clifton and Hector Garcia-Molina. Indexing in a Hypertext Database. In Pro-
ceedings of the 16th International Conference on Very Large Data Bases (VLDB),

pages 36{49, Brisbane, Queensland, Australia, August 1990. Morgan Kaufmann.

8. Shaul Dar, Michael Franklin, Bjorn Jonsson, Divesh Srivastava, and Michael Tan.

Semantic Data Caching and Replacement. In Proceedings of the 22nd International

Conference on Very Large Data Bases (VLDB), Bombay, India, September 1996.
http://www.cs.umd.edu/projects/dimsum/papers/semanticcaching.ps.gz.

9. Michael J. Franklin. Client Data Caching. Kluwer Academic Press, Boston, 1996.

10. Richard Furuta and P. David Stotts. A Functional Meta-Structure for Hypertext

Models and Systems. Electronic Publishing, 3(4):179{205, 1990.

11. Frank G. Halasz and Mayer D. Schwartz. The Dexter Hypertext Reference Model.

Communications of the ACM, 37(2):30{39, 1994.

12. Alberto O. Mendelzon and Tova Milo. Formal Models of Web Queries. In Proceed-

ings of ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems(PODS), pages 134{143, Tucson, Arizona, 1997.

13. David E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried Reich. FOHM: a

Fundamental Open Hypertext Model for Investigating Interoperability between
Hypertext Domains. In Hypertext, pages 93{102, 2000.

14. Luc Moreau and Wendy Hall. On the Expressiveness of Links in Hypertext Sys-
tems. The Computer Journal, 41(7):459{473, 1998.

15. Liadan O'Callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and Rajeev

Motwani. Streaming-Data Algorithms For High-Quality Clustering. In Interna-

tional Conference on Data Engineering (ICDE), 2002.



16. Elizabeth J. O'Neil, Patrick E. O'Neil, and Gerhard Weikum. The LRU-K Page

Replacement Algorithm for Database Disk Bu�ering. In Proceedings of ACM SIG-

MOD International Conference on Management of Data, pages 297{306, New York,

1993.

17. Seongbin Park. Structural Properties of Hypertext. In UK Conference on Hyper-

text, pages 180{187, 1998.

18. Gerard Salton and Christopher Buckley. Term-Weighting Approaches in Auto-

matic Text Retrieva l. In Karen Sparck Jones and Peter Willett, editors, Readins
in Information Retrieval, pages 323{328. Morgan Kaufmann, 1997.

19. Curt Schimmel. Unix Systems for Modern Architectures. Addison-Wesley, 1994.

20. Marc Spielmann, Jerzy Tyszkiewicz, and Jan Van den Bussche. Distributed Com-
putation of Web Queries Using Automata. In Proceedings of ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems(PODS), pages

97{108, Madison, Wisconsin, USA, 2002.
21. P. David Stotts and Richard Furuta. Programmable Browsing Semantics in Trellis.

In Hypertext, pages 27{42, New York, 1989.

22. Frank WM. Tompa. A Data Model for Fexible Hypertext Database Systems. ACM
Transations of Information Systems, 7(1):85{100, 1989.

23. Marcelo Augusto Santos Turine, Maria Cristina Ferreira de Oliveira, and Paulo Ce-

sar Masiero. A Navigation-Oriented Hypertext Model Based on Statecharts. In
Hypertext, pages 102{111, 1997.

24. Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An EÆcient Data

Clustering Method for Very Large Databases. In SIGMOD Conference, pages 103{

114, 1996.


