October 12, 2023

- The following part in the statement of the theorem

Let $Z_{1 . . h}=\left\langle z_{1}, z_{2}, \ldots, z_{h}\right\rangle$ be any repetition-bounded longest common subsequence of $X_{1 . . i}$ and $Y_{1 . . j}$ satisfying an occurrence vector \mathbf{v}. Then the followings are satisfied:
must have been replaced with the following.
There is a repetition-bounded longest common subsequence $Z_{1 . . h}=$ $\left\langle z_{1}, z_{2}, \ldots z_{h}\right\rangle$ of $X_{1 . . i}$ and $Y_{1 . . j}$ satisfying an occurrence vector \mathbf{v} and the following properties:

- In (1) and (2), " $z_{h}=s_{p}$ " indicates that z_{h} comes from the common symbol s_{p} of x_{i} and y_{j}. However, this expression might be inappropriate, since even if x_{i} and y_{j} are both s_{p}, the expression $z_{h}=s_{p}$ could include a situation that $z_{h}=s_{p}$ comes from another pair of positions, say, $x_{i^{\prime}}$ and $y_{j^{\prime}}$ for $i^{\prime}>i$ and $j^{\prime}>j$. Thus, please read that $z_{h}=s_{p}$ here means that $z_{h}=x_{i}=y_{j}$.
- In (2), the situation $z_{h}=x_{i}=y_{j}$ is only considered. Here we note that any repetition-bounded longest common subsequence satisfying $z_{h} \neq x_{i}$ has length at most the length of a repetition-bounded longest common subsequence satisfying $z_{h}=x_{i}$:
The condition $z_{h} \neq x_{i}$ implies that $Z_{1 . . h}$ is a repetition-bounded longest common subsequence of $X_{1 . . i-1}$ and $Y_{1 . . j-1}$ satisfying \mathbf{v} (which can be shown by a similar discussion to the proof of (2) of the theorem). Assume that $Z_{1 . . h}$ satisfies $z_{h} \neq x_{i}$ and $z_{k}=s_{p}=x_{i^{\prime}}=y_{j^{\prime}}$ for $k<h, i^{\prime}<i$, and $j^{\prime}<j$. Then, we can remove z_{k} from $Z_{1 . . h}$ and instead add $s_{p}=x_{i}=y_{j}$ at the end without decreasing its length or violating the vector \mathbf{v}. In the obtained common subsequence $Z_{1 . . h-1}^{\prime}$, the part $Z_{1 . . h-1}^{\prime}$ satisfies a vector $\left.\mathbf{v}\right|_{p=v_{p}-1}$, and also $z_{h}=x_{i}$ holds. The case that such z_{k} is not included in $Z_{1 . . h}$ is treated in (3) of the theorem. Hence, it is enough to consider repetition-bounded longest common subsequences satisfying $z_{h}=x_{i}$ in (2) of the theorem.

