
Corrigendum to “Complexity and

approximability of the happy set problem”

[Theoret. Comput. Sci. 866(2021) 123–144]

Yuichi Asahiro∗ Hiroshi Eto† Tesshu Hanaka‡

Guohui Lin§ Eiji Miyano† Ippei Terabaru†

August 2, 2023

Abstract

For a graph G = (V,E) and a subset S ⊆ V of vertices, a vertex
is happy if all its neighbor vertices in G are contained in S. Given a
connected undirected graph and an integer k, the Maximum Happy Set
Problem (MaxHS) asks to find a set S of k vertices which maximizes the
number of happy vertices in S (note that all happy vertices in V belong
to S). We proposed an algorithm for MaxHS on proper interval graphs
in Theoretical Computer Science, 866(2021), 123–144. However, due to a
wrong observation made by the authors, it works only on proper interval
graphs obeying the observation. In this corrigendum, we propose a new
algorithm which runs in O(k|V | log k+|E|) time for proper interval graphs.

Keywords happy set, proper interval graph, dynamic programming

1 Introduction

In this section, we recall several definitions in [1] for completeness of this corri-
gendum, and then explain the error contained in [1].

1.1 Definitions

Let G = (V,E) be a connected undirected graph, where V and E denote the
set of vertices and the set of edges, respectively. V (G) and E(G) also denote
the vertex set and the edge set of G. Throughout this corrigendum, let n = |V |
and m = |E| for any given graph. We denote an edge with endpoints u and v

by {u, v}. The closed neighborhood of a vertex v in G is denoted by N [v] =
{v} ∪ {u ∈ V | {u, v} ∈ E}. For a graph G = (V,E) and a subset S ⊆ V of
vertices, a vertex v is happy (with respect to S) if N [v] ⊆ S.

∗Corresponding author. Department of Information Science, Kyushu Sangyo University,
2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan. asahiro@is.kyusan-u.ac.jp.

†Kyushu Institute of Technology, Fukuoka, Japan
‡Kyushu University, Fukuoka, Japan
§University of Alberta, Edmonton, Canada

1

The Maximum Happy Set problem (MaxHS) is defined as follows.

Maximum Happy Set problem (MaxHS)

Input: An undirected graph G = (V,E) and an integer k

Goal: Find a subset S ⊆ V of k vertices such that the number #h(S) of happy
vertices is maximized.

A graphH is a subgraph of a graph G = (V,E) if V (H) ⊆ V and E(H) ⊆ E.
For a subset of vertices U ⊆ V , let G[U] be the subgraph of G induced by U .
For a subset C of V (G), if every pair of vertices in C are adjacent in G[C], then
G[C] or C is called a clique. A clique is maximal if it is not contained in any
other clique.

Given an undirected graph G = (V,E) and two non-adjacent vertices u and
v, a subset S ⊂ V is a (u, v)-separator if the removal of S separates u and v in
distinct connected components. If no proper subset of S is a (u, v)-separator,
then S is a minimal (u, v)-separator. Conversely, if there exists a pair of non-
adjacent vertices u and v such that S′ ⊂ V is a (minimal) (u, v)-separator, then
S′ is just called a (minimal) separator.

For an interval I of real line, l(I) and r(I) are the left endpoint and the
right endpoint of I, respectively. A graph G is an interval graph if there exists
an interval representation I = {I1, I2, . . . , In} such that there is an edge {i, j}
between two vertices i and j in G if and only if Ii and Ij intersect, i.e., Ii∩Ij 6= ∅.
An interval graph G with interval representation I = {I1, I2, . . . , In} is a proper
interval graph if Ii 6⊆ Ij and Ij 6⊆ Ii for any 1 ≤ i < j ≤ n. For simplicity,
we use lj and rj instead of l(Ij) and r(Ij) when an interval representation
I = {I1, I2, . . . , In} is given.

1.2 The error

The error in [1] is related to a clique tree of an input graph. Let G = (V,E) be
a proper interval graph. The clique graph of G, denoted by Gc = (Vc, Ec, w),
with w : Ec → {1, 2, . . . , n} is defined as follows [3]1:

1. The vertex set Vc is the set of maximal cliques of G, i.e., a vertex ci in Gc

corresponds to a maximal clique Ci in G.

2. For two vertices ci, cj ∈ Vc, the edge {ci, cj} belongs to Ec if and only if
the intersection V (Ci)∩V (Cj) is a minimal (u, v)-separator for every pair
of u ∈ (V (Ci) \ V (Cj)) and v ∈ (V (Cj) \ V (Ci)).

3. The edge {ci, cj} ∈ Ec is weighted by the number of vertices of the corre-
sponding minimal separator Ui,j , i.e., w(ci, cj) = |Ui,j |.

A clique tree of a proper interval graph G is a maximum-weight spanning
tree of the clique graph of G [3]. In addition, if G is a proper interval graph,
then G has a clique tree which is a simple path [6]. Such a clique tree is
called a clique path. Thus, in [1], we assumed that the input graph G consists
of t maximal cliques C1 through Ct, and G has a clique path P = (VP , EP)
with VP = {c1, c2, . . . , ct} and EP = {{c1, c2}, {c2, c3}, . . . , {ct−1, ct}}, where

1Precisely, the clique graph is defined on chordal graphs containing (proper) interval graphs
as a subset. However, since this corrigendum considers proper interval graphs only, the defi-
nitions here and in the later part are only described for (proper) interval graphs.

2

2

3

4

5

12

1
3

4

5

6

6

2 2

Figure 1: A proper interval graph G with vertex set {1, 2, 3, 4, 5, 6} (left), an
interval representation of G (middle), and a clique path of G (right). There
are three maximal cliques C1, C2, and C3 on {1, 2, 3}, {2, 3, 4}, and {3, 4, 5, 6},
respectively. The separators are S1 = {2, 3} and S2 = {3, 4}, and hence S1 ∩
S2 = {3} 6= ∅.

the vertex ci corresponds to the maximal clique Ci for 1 ≤ i ≤ t. Let Si be
a minimal separator of two cliques Ci and Ci+1 for 1 ≤ i ≤ t − 1, that is
Si = V (Ci) ∩ V (Ci+1).

The proposed algorithm for proper interval graphs in [1] was based on the
clique path and minimal separators of the input. In [1], we made the following
observation:

Error 1 (line 3 on page 139 in [1]) Si ∩ Si+1 = ∅ holds for every i,

However, this was incorrect. See Fig. 1 for an example, in which this observation
does not hold. Since the algorithm for proper interval graphs was designed
based on this observation, i.e., it was incorrect, we would like to propose a new
algorithm which runs in O(kn log k+m) time for proper interval graphs in this
corrigendum.

1.3 MaxHS on interval representation

The set of intervals that intersect an interval Ii is denoted by N [Ii]. For a
set S of intervals, we say that an interval Ii is happy (with respect to S) if
N [Ii] ⊆ S. On the contrary, an interval I is unhappy (with respect to S) if I
is not happy (with respect to S). Using these notations, the goal of MaxHS

on proper interval graphs can be interpreted as finding a set S of k intervals
from an interval representation of a given proper interval graph such that the
number #h(S) of happy intervals is maximized. Thus we first obtain an interval
representation from an input proper interval graph, and then find an optimal
set of intervals, although the original paper [1] tried to design an algorithm on
the input graphs without using interval representations.

1.4 Organization

In Section 2, we first give two basic properties on interval representations with
several notations. The proposed algorithm and its correctness are described
in Section 3. Then, Section 4 analyzes the time complexity of the proposed
algorithm. Finally, we conclude this corrigendum in Section 5.

3

2 Preliminaries

Given a proper interval graph, the proposed algorithm works on its interval rep-
resentation. The following proposition states the time complexity of obtaining
an interval representation from a proper interval graph.

Proposition 1 ([5]) For a proper interval graph G, an interval representation
I = {I1, I2, . . . , In} of G can be computed in O(n + m) time. Moreover, the
obtained interval representation I satisfies the following condition: li < lj for
1 ≤ i < j ≤ n.

The next proposition describes a property related to the right endpoints of
intervals in the interval representation obtained by Proposition 1.

Proposition 2 The interval representation I obtained in Proposition 1 also
satisfies the following condition: ri < rj for 1 ≤ i < j ≤ n.

Proof Assume for contradiction that ri ≥ rj . Since li < lj from Proposition 1,
Ij ⊆ Ii. This contradicts the assumption that G is a proper interval graph.
Thus, ri < rj holds. �

From the above two propositions, we assume that an interval representation
I = {I1, I2, . . . , In} of a proper interval graph satisfies li < lj and ri < rj for
1 ≤ i < j ≤ n. For an interval Ii in an interval representation I, L(i) and R(i)
respectively denote the indices of the leftmost and the rightmost intervals inter-
secting Ii. Namely, intervals IL(i), . . . , IR(i) intersect Ii, where L(i) ≤ i ≤ R(i)
holds. Note that L(i) and/or R(i) may be i. Then N [Ii] is the set of intervals
{IL(i), . . . , IR(i)}. By Propositions 1 and 2, L(R(x)) = x and R(L(x)) = x hold.

3 Proposed algorithm

3.1 Overview

The overview of the proposed algorithm is as follows.

Step 1. Obtain an interval representation I = {I1, I2, . . . , In} from an input
proper interval graph with n vertices and m edges.

Step 2. Compute L(i) and R(i) for 1 ≤ i ≤ n.

Step 3. The maximum number of happy intervals is computed by a dynamic
programming method.

Step 1 can be done in O(n+m) time by Proposition 1. The details of Steps 2
and 3 will be given in the following subsections. We will present a procedure
for Step 3, which only computes the maximum number of happy intervals for
simplicity. An optimal set of intervals and hence an optimal set of vertices that
corresponds to the maximum value can be found by adding a trace-back step
without increasing the procedure’s time complexity.

4

3.2 Step 2

We show the following lemma, whose proof is constructive and gives a procedure
for Step 2.

Lemma 1 Step 2 can be done in O(n) time.

Proof First set L(1) = 1 in O(1) time. Then, run the following procedure.

Step 2-1. Let i = 1 and j = 2.

Step 2-2. If lj ≤ ri, then set L(j) = i and increment j. Otherwise (i.e., in the
case lj > ri), set R(i) = j − 1 and increment i.

Step 2-3. If j ≤ n, go to Step 2-2.

Step 2-4. Set R(i′) = n for i ≤ i′ ≤ n

The two indices i and j always satisfy i ≤ j during the execution of the above
procedure; if i = j, the condition lj ≤ ri = rj holds and j is incremented in
Step 2-2. By Step 2-2 and the condition of Step 2-3, when Step 2-4 starts, all of
L(1), . . . , L(n) have been determined. On the other hand, only R(1), . . . , R(i−
1) have been determined in Step 2-2, and hence we prepare Step 2-4. The
correctness of the values L(i) and R(i) for every i is obvious from Propositions 1
and 2.

Let us estimate the running time of the above procedure. Each of Steps 2-1,
2-2, and 2-3 can be done in O(1) time. One execution of Step 2-2, increments i
or j. Hence Step 2-2 is repeated at most 2n = O(n) times. Thus the total time
spent by Steps 2-2 and 2-3 is O(n). Since Step 2-4 also takes O(n) time, the
total running time of the above procedure is O(n). �

3.3 Step 3

We describe the dynamic programming method used in Step 3 of the proposed
algorithm.

3.3.1 Notation

Given an interval representation I = {I1, I2, . . . , In}, define Ii =
⋃i

j=1 Ij . For
a set S of intervals, let Si = S \ {Ii+1, . . . , In}. With respect to Si, we represent
the status of an interval Ii by three letters s, u, and s as follows.

• s: Ii 6∈ Si, and hence Ii is unhappy with respect to Si.

• u: Ii ∈ Si, however Ii is unhappy with respect to Si

• s: Ii ∈ Si. Whether Ii is happy or not with respect to S could not be
determined only by Si , i.e., it will be determined based on how Ii+1, . . . , In
are selected into S. The important property in this case is thatN [Ii]∩Ii ⊆
Si should hold. As an exception, when we decide In ∈ Si, whether In is
happy or not with respect to S is determined, since Sn = S.

5

Then, we simply say that Ii is c (with respect to Si) for c ∈ {s, u, s} if the
condition of Ii is represented by c with respect to Si. The condition s, u, or s
of an interval Ii with respect to Si is denoted by c(Ii).

For 1 ≤ i ≤ n, 0 ≤ ℓ ≤ k, and c ∈ {s, u, s}, we define H(i, ℓ, c) to be the
maximum number of happy intervals with respect to Si under the conditions
|Si| = ℓ and Ii is c. For i ≤ 0 or ℓ < 0, we define H(i, ℓ, c) = −∞ for every
c ∈ {s, u, s}. Step 3 of the proposed algorithm computes

max
c∈{s,u,s}

H(n, k, c) (1)

in a dynamic programming manner.
Along with c(Ii), let hi(Ij) for 1 ≤ j ≤ i ≤ n represent the happiness of Ij

with respect to S, by three letters: u, h, or y.

• u: Ij is already determined unhappy with respect to S, only by Si. This
happens when c(Ij) = s or c(Ij) = u.

• h: Ij is already determined happy with respect to S, only by Si. This
happens only when c(Ij) = s.

• y: Whether Ij is happy or not with respect to S has not been determined
yet, only by Si. This happens only when c(Ij) = s.

This hi(Ij) is only used for explanation. Observe that hn(Ij) = hR(j)(Ij) for
any 1 ≤ j ≤ n, since Ij overlaps IL(i), . . . , IR(i). Thus, in order to express that
Ij is determined happy with respect to S, we will increment H(R(j), ℓ, s) and
H(R(j), ℓ, u) when every c(IL(j)), . . . , c(IR(j)) is s or u.

3.3.2 Initialization: i = 1

Consider I1 = {I1}. For any candidate solution S, I1 is s or s with respect to
Si, since all the neighbors of I1 is in S \Si. Thus, we set 0 for these valid cases,
and −∞ for the other cases, to each corresponding entry of the table H :

H(1, 0, s) = 0,

H(1, 1, s) = −∞,

H(1, 1, s) = 0,

H(1, 0, s) = −∞,

H(1, 0, u) = −∞,

H(1, 1, u) = −∞, and

H(1, ℓ, c) = −∞ for 2 ≤ ℓ ≤ k and c ∈ {s, u, s}.

For each pair of ℓ and c, the above can be done in O(1) time. Since the
number of pairs of ℓ and c is 3(k + 1), we have the following lemma.

Lemma 2 It takes O(k) time to fill H(1, ℓ, c) for 0 ≤ ℓ ≤ k and c ∈ {s, u, s}.

3.3.3 i ≥ 2 and c(Ii) = s

Consider the case that c(Ii) = s. Since the intervals I1, . . . , IL(i)−1 do not
overlap Ii, hi(Ij) is independent of c(Ii) for 1 ≤ j ≤ L(i)− 1. As for L(i) ≤ j ≤

6

i − 1, hi(Ij) = u, regardless of hi−1(Ij): if hi−1(Ij) = y, hi(Ij) turns to be u,
and, if hi−1(Ij) = u, then clearly hi(Ij) = u. Moreover, hi−1(Ij) must be u or
y, since whether IR(j) is included in S or not is unclear when considering Si−1,
and hence we can not conclude that Ij is happy. In summary, the number of
happy vertices does not increase if c(Ii) = s. Hence, we set as follows.

H(i, ℓ, s) = max{H(i− 1, ℓ, s), H(i− 1, ℓ, u), H(i− 1, ℓ, s) (2)

For each pair of i and ℓ, the above can be computed in O(1) time. Since the
number of pairs of i and ℓ is n(k + 1), we have the following lemma.

Lemma 3 It takes O(kn) time to fill H(i, ℓ, s) for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k.

3.3.4 i ≥ 2 and c(Ii) = u

As in the case c(Ii) = s, since the intervals I1, . . . , IL(i)−1 do not overlap Ii,
hi(Ij) is independent of c(Ii) for 1 ≤ j ≤ L(i)− 1.

Considering Ii, the case c(Ii) = u can happen only if (at least) one of
IL(i), · · · , Ii−1 is not included in Si. Let j = max{j′ | Ij′ 6∈ Si, L(i) ≤ j′ < i}.
Namely, Ij is the rightmost interval which is not in Si and overlaps Ii, and then
Ij+1, . . . , Ii are included in Si. Since Ij 6∈ Si and Ij ∩ Ii′ 6= ∅ for L(i) ≤ i′ ≤
i − 1, hi(IL(i)) = · · · = hi(Li−1) = u. Thus, by selecting Ii into the solution
S (or Si), the number of happy vertices does not increase. (Note that the
purpose of selecting Ij+1, . . . , Ii into the solution is to make some intervals from
Ii+1, . . . , IR(j) happy.) Therefore, H(i, ℓ, u) is estimated by H(j, ℓ − (i − j), s),
where i− j is the number of intervals Ij+1, . . . , Ii.

Since ℓ ≤ k, we only need to consider the index j satisfying i − j ≤ k, i.e.,
i−k ≤ j. Here, i−k might be negative, and hence max{i−k, 1, L(i)} ≤ j ≤ i−1
is the range of j to be considered. By letting i′ = max{i − k, 1, L(i)}, the
recursive formula is as follows.

H(i, ℓ, u) = max
i′≤j≤i−1

{H(j, ℓ− (i − j), s)} (3)

Since the number of candidates for j is O(k), we can compute the above in
O(k) time for each pair of i and ℓ.

Lemma 4 It takes O(k2n) time to fill H(i, ℓ, u) for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k.

3.3.5 i ≥ 2 and c(Ii) = s

Similar to the above two subsections, since the intervals I1, . . . , IL(i)−1 do not
overlap Ii, hi(Ij) is independent of c(Ii) for 1 ≤ j ≤ L(i)− 1.

The case c(Ii) = s happens only when all of IL(i), . . . , Ii−1 are selected into
a solution Si. Let j = max{j′ | Ij′ 6∈ Si, j′ < L(i)}, i.e., Ij is the rightmost
interval which is not in Si. Namely, i − j intervals Ij+1, . . . , Ii are included in
Si. Note that R(j) < L(i) holds. Here, it is sufficient to consider j satisfying
i − j ≤ k, i.e., i − k ≤ j, since i − j intervals Ij+1, . . . , Ii are included in Si.
To cope with the case that i− k is negative, the range of j to be considered is
i′ ≤ j ≤ L(i)− 1, where i′ = max{i− k, 1}.

Since Ij 6∈ Si, hi(Ij+1) = · · · = hi(IR(j)) = u. If R(j) < L(i + 1) (≤ i),
hi(IR(j)+1) = · · · = hi(IL(i+1)−1) = h, since IL(R(j)+1), . . . , IR(L(i+1)−1) are

7

unhappy

happy

newly becomes happy

not determined yet

Figure 2: The case R(j) < L(i + 1). Selecting Ii makes the intervals
IL(i), . . . , IL(i+1)−1 happy under the condition that Ij 6∈ Si and whether Ij
is included into the solution has been determined.

included in Si, where j < L(R(j) + 1) and R(L(i + 1) − 1) ≤ i. Among
them, hi(IR(j)+1) = · · · = hi(IL(i)−1) have been already determined until when
considering Si−1, and IL(i), . . . , IL(i+1)−1 newly become happy by selecting Ii
into the solution, Then, hi(IL(i+1)) = · · · = hi(Ii) = y. See Figure 2. If
R(j) ≥ L(i+ 1), hi(IR(j)+1) = · · · = hi(Ii) = y (whether they are happy or not
will be determined by Ii+1 and later).

Let us introduce a variable xi,j for each pair of i and j such that xi,j = 1 if
R(j) < L(i + 1), and xi,j = 0 otherwise. Using this xi,j , the recursive formula
is as follows.

H(i, ℓ, s) = max
i′≤j≤L(i)−1

{H(i, ℓ− (i− j), s) + xi,j · (L(i+ 1)− L(i)− 1)} (4)

Since L(i + 1) and R(j) have already been computed in Step 2 of the algo-
rithm, xi,j can be computed in O(1) time. Then, since the number of candidates
for j is O(k), the above can be computed in O(k) time for each pair of i and ℓ.

Lemma 5 It takes O(k2n) time to fill H(i, ℓ, s) for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k.

4 Running time

The number of entries in the table H is O(kn), and each entry stores one
integer at most k (the possible maximum number of happy vertices). Then, from
Proposition 1 and Lemmas 1, 2, 3, 4, and 5, we can show in a straightforward
way that the proposed algorithm runs in O(k2n+m) time.

We improve the time complexity by a careful implementation of Steps 2 and
3. Concretely, we reduce the O(k)-time computing the formulas (3) and (4) for
each triple (i, ℓ, c), where c ∈ {u, s}, to O(log k)-time as follows. We compute
(2) before computing (3) and (4), and then apply the following.

The formula (3): First suppose that i ≥ k + 1. To compute H(i, ℓ, u),
we need H(j, ℓ − (i − j), s) for i − k ≤ j ≤ i − 1, i.e., H(i − 1, ℓ − 1, s), H(i −
2, ℓ − 2, s), . . . , H(i − k, ℓ − k, s). Similarly, computing H(i + 1, ℓ + 1, u), we

8

need H(i, ℓ, s), H(i − 1, ℓ − 1, s), . . . , H(i − k + 1, ℓ − k + 1, s). That is, H(i −
1, ℓ − 1, s), . . . , H(i − k + 1, ℓ − k + 1, s) are used for computing H(i, ℓ, u) and
H(i+ 1, ℓ+ 1, u).

Based on the above observation, for each pair (i, ℓ), we prepare (maintain)
a red-black tree [4] storing (at most) k values of H(i − 1, ℓ− 1, s), H(i − 2, ℓ −
2, s), . . . , H(i− k, ℓ− k, s). To compute (3), we pick the maximum value in the
red-black tree. Then, as maintenance of the red-black tree, we delete H(i −
k, ℓ− k, s) from the red-black tree, and then insert H(i, ℓ, s) into the red-black
tree, both of which can be done in O(log k) time. Note that two or more same
values as H(i − k, ℓ − k, s) may exist in the red-black tree, but we can remove
any one of them. In order to compute H(i + 1, ℓ + 1, u), we use this updated
red-black tree, similarly.

Consider the next case that i ≤ k. In this case, during the maintenance of
the red-black tree, only insertion of H(i, ℓ, s) is done, while we do not delete
H(i− k, ℓ− k, s) (which does not exist since i ≤ k).

To fill the table H(i, ℓ, s) for 1 ≤ i ≤ n and 0 ≤ ℓ ≤ k, we first construct
one red-black tree for each pair of i and ℓ for i = 1 or ℓ = 1, i.e., (i, ℓ) =
(1, 1), (1, 2), . . . , (1, k), (2, 1), (3, 1), . . . , (n, 1) (O(k + n) = O(n) trees in total),
and maintain them for pairs (1+ 1, 1+ 1) = (2, 2), (1+ 1, 2+ 1) = (2, 3), and so
on. Thus, we can compute (3) in O(log k) time. Since the number of nodes and
each stored value are both O(k) in these red-black trees, the total additional
space needed is O(kn log k), which equals to the required space for the table H

having O(kn) entries of value (at most) k.
The formula (4): We just store the values of H(i, ℓ − (i − j), s) + xi,j ·

(L(i+1)−L(i)−1) in red-black trees, instead of H(i, ℓ−(i−j), s). By a similar
argument to the above, (4) can be computed in O(log k) time.

In summary, both of (3) and (4) can be computed in O(log k) time for each
pair of i and ℓ, and then we have the following theorem.

Theorem 1 The proposed algorithm runs in O(kn log k +m) time.

5 Conclusion

We proposed an O(kn log k +m)-time algorithm for MaxHS on proper interval
graphs, correcting an error in [1]. As for interval graphs, we proposed anO(kn8)-
time algorithm in [1]. Very recently, Eto, Ito, Miyano, Suzuki, and Tamura
designed an O(k3n+ n2)-time algorithm for interval graphs [2].

Declaration of competing interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Acknowledgments

This work is supported in part by JSPS KAKENHI Grant Numbers JP17K00024,
JP21H05852, JP21K11755, JP21K17707, JP22H00513, JP22K11915, and
JP23H04388.

9

References

[1] Y. Asahiro, H. Eto, T. Hanaka, G. Lin, E. Miyano, I. Terabaru. Complex-
ity and approximability of the happy set problem, Theoretical Computer
Science, 866(2021), 123–144.

[2] H. Eto, T. Ito, E. Miyano, A. Suzuki, Y. Tamura. Happy set prob-
lem on subclasses of co-comparability graphs, Algorithmica (2022).
https://doi.org/10.1007/s00453-022-01081-0.

[3] P. Bernstein, N. Goodman. Power of natural semijoins. SIAM J. Comput.
10(4)(1981), 751–771.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Chapter 13, Red-black
trees, in Algorithm Introduction, fourth edition, The MIT Press, 2022

[5] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu, A.P. Sprague. Simple linear
time recognition of unit interval graphs, IPL, 55(1995), 99–104.

[6] P. Gilmore, A. Hoffman. A characterization of comparability graphs and of
interval graphs. Can. J. Math, 16(1964), 539–548.

10

