
Happy Set Problems on Cubic Graphs and
Convex Bipartite Graphs

Yuichi Asahiro1, Hiroshi Eto2, Guohui Lin3, Eiji Miyano2, and Yudai Oka2

1 Kyushu Sangyo University, Fukuoka, Japan (asahiro@is.kyusan-u.ac.jp)
2 Kyushu Institute of Technology, Iizuka, Japan (eto@ai.kyutech.ac.jp,

miyano@ai.kyutech.ac.jp, oka.yudai550@mail.kytech.jp)
3 University of Alberta, Edmonton, Canada (guohui@ualberta.ca)

Abstract. In this paper, we study the approximability and the compu-
tational complexity of the Maximum Happy Set problem (MaxHS for
short) on graph classes: For an undirected graph G = (V,E) and a sub-
set S ⊆ V of vertices, a vertex v is happy if v and all its neighbors are
in S; otherwise unhappy. Given a graph G and an integer k, the goal of
MaxHS is to find a subset S of k vertices such that the number of happy
vertices is maximized. MaxHS is known to be NP-hard even for bipartite
graphs and cubic (i.e., 3-regular) graphs. As for the approximability, it
is known that there is a polynomial-time (2∆ + 1)-approximation algo-
rithm for MaxHS on graphs with maximum degree ∆, and furthermore
the approximation ratio can be improved to ∆ if ∆ is a constant. In this
paper, we first design a polynomial-time 2-approximation algorithm for
MaxHS on cubic graphs. We then design an exact algorithm for MaxHS
on n-vertex convex bipartite graphs, which runs in O(n2 + k3n) time.

Keywords: Happy set problem· Regular graph · Convex bipartite graph

1 Introduction

The homophily is the fundamental law that people are more likely to connect
with people sharing similar interests with them in social networks [15]. Moti-
vated by the homophily law, Zhang and Li [21] introduced the concept of happy
vertices in terms of graph coloring problems, and subsequently the concepts have
attracted many researchers [1, 2, 9, 16, 22]. Later, Asahiro et al. [4] formulated the
Maximum Happy Set Problem (MaxHS) in terms of graph subset problems:
For an undirected graph G = (V,E) and a subset S ⊆ V of vertices, we say
that a vertex v ∈ V is happy if v and all its neighbors are in S, and unhappy,
otherwise. Given an undirected graph G = (V,E) and an integer k, the goal of
MaxHS is to find a subset S ⊆ V of k vertices such that the number of happy ver-
tices is maximized. MaxHS is NP-hard even for bipartite graphs [3], co-bipartite
graphs [11], cubic graphs [3], and split graphs [4]. On the other hand, fortu-
nately, MaxHS can be solved in O(k2n) time for block graphs [3], O(n2 + k3n)
time for interval graphs [11], O(kn log k+m) time for proper interval graphs [5],



O(n2 + k3n) time for permutation graphs, and O(n2 + d2(k + 1)3dn) time for
d-trapezoid graphs [11], where n and m are the numbers of vertices and edges
in the input graph, respectively. (See, e.g., [7] for details on graph classes.) As
for the approximability, it is known [3] that there is a polynomial-time (2∆+1)-
approximation algorithm for MaxHS on graphs with maximum degree ∆, and
furthermore the approximation ratio can be improved to ∆ if ∆ is a constant.
On the other hand, there are no known inapproximability results for MaxHS as
long as the authors know, while its NP-hardness is known as mentioned above.

In this paper, we study the approximability of MaxHS on cubic graphs, and
the computational complexity of MaxHS on convex bipartite graphs. A graph
G is cubic if the degree of every vertex in G is exactly three. Regular graphs
appear in various fields due to their uniform structures, e.g., sensor network
topologies and game theory. Especially, since even for cubic graphs, many com-
binatorial problems become hard to solve in polynomial time, many researchers
are devoted to studying cubic graphs (see, e.g., [13]). A graph G is bipartite if
its vertex set can be partitioned into two disjoint subsets, called partite sets,
VU and VW so that every edge connects a vertex in VU to one in VW , and it is
often represented by G = (VU ∪ VW , E). A bipartite graph G = (VU ∪ VW , E)
is convex if the vertices in VU can be ordered in such a way that, for each
w ∈ VW , the neighborhood N(w) of w are consecutive in VU . That is, there
exists an ordering σ : VU → {1, 2, . . . , |VU |} such that for any pair of two ver-
tices u, u′ ∈ N(w) ⊆ VU and any u′′ ∈ VU with σ(u) < σ(u′′) < σ(u′), it
holds u′′ ∈ N(w). The ordering σ of the vertices in VU is said to be convex,
and G is said to be convex with respect to VU . The convex bipartite graphs
naturally arise in several scheduling and industrial applications, and thus many
efficient algorithms have been designed on convex bipartite graphs for popular
graph optimization problems such as Maximum Matching [8, 12, 20], Maxi-
mum Independent Set [19], and Minimum Feedback Vertex Set [17]. Our
contributions are summarized as follows (but, due to space limitations, we omit
many details and proofs from the paper):

1. In Section 2, we first design a polynomial-time 2-approximation algorithm
for MaxHS on cubic graphs that improves the best known approximation
ratio 3 in [3].

2. In Section 3, we show that MaxHS can be solved in O(n2 + k3n) time if
the input graph is restricted to convex bipartite graphs, while MaxHS on
bipartite graphs is NP-hard as shown in [3].

Related work. MaxHS is also studied from the point of view of parameter-
ized complexity. MaxHS is W[1]-hard when parameterized by k even on split
graphs [4]. By contrast, MaxHS admits fixed-parameter algorithms when param-
eterized by structural parameters of the graphs, such as tree-width [4], neigh-
borhood diversity [4], twin-cover number [4], modular-width [18], and clique-
width [18] of a graph.

Preliminaries. Let G = (V,E) be an undirected graph, where V and E denote
the set of vertices and the set of edges, respectively. Throughout the paper, let
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n = |V |. for any given graph. We denote an edge with the endpoints u and v
by {u, v}. A graph H is a subgraph of a graph G = (V,E) if V (H) ⊆ V and
E(H) ⊆ E. For a subset of vertices U ⊆ V , let G[U ] be the subgraph of G
induced by U . The set of vertices adjacent to a vertex v in G, i.e., the open
neighborhood of v is denoted by N(v) = {u ∈ V | {u, v} ∈ E}. Similarly, let
N(S) = {u ∈ V \ S | v ∈ S, {u, v} ∈ E} be the open neighborhood of a subset
S of vertices. The closed neighborhood of v (S, resp.) is denoted by N [v] (N [S],
resp.), i.e., N [v] = {v} ∪ N(v) (N [S] = S ∪ N(S), resp.). For a proper subset
S ⊂ V of the vertices, the cut (S, V \ S) is the set of all edges in G with one
endpoint in S and the other in V \ S.

For an undirected graph G = (V,E) and a subset S ⊆ V of vertices, a vertex
v is happy if N [v] ⊆ S; otherwise, i.e., if N [v] ̸⊆ S, then v is unhappy. Let #h(S)
and #u(S) denote the number of happy and unhappy vertices in a subset S of
vertices, respectively. By definition, |S| = #h(S) + #u(S) holds. An algorithm
ALG is called an α-approximation algorithm and ALG’s approximation ratio is α
if OPT (G)/ALG(G) ≤ α holds for every input G, where ALG(G) and OPT (G)
are the numbers of happy vertices obtained by applying ALG and an optimal
algorithm to G, respectively.

2 Cubic graphs

In this section, we propose a polynomial-time 2-approximation algorithm, named
CUBIC, for MaxHS on cubic graphs. From now on, without loss of generality, we
can assume that 4 ≤ k ≤ |V | − 1 for cubic graphs since the size of any happy
set in every connected component is zero if 1 ≤ k ≤ 3; and the size is trivially
|V | if k = |V |. If 4 ≤ k ≤ 7, then the proposed algorithm CUBIC exhaustively
finds an optimal solution. Otherwise, CUBIC executes our main procedure ALG,
which behaves as follows: (1) ALG initially selects a special subset of vertices into
a partial solution set S′ in Step 1. (2) In Steps 2 through 4, ALG enlarges S′ by
putting the neighbor vertices in N(S′) into S′. (3) ALG eventually finds a solution
S of k vertices, and outputs S in Steps 5 and 6. In the following, Section 2.1 first
describes our main procedure ALG. Next, a potential method is used to calculate
the amortized number of happy vertices obtained by the main part (Steps 2
through 4) of ALG in Section 2.2. Then, Section 2.3 observes the initial setup
Step 1 of ALG to make the potential sufficiently large at the beginning stage.
Finally, we describe the whole algorithm CUBIC, estimate its approximation ratio
by using the potential method, and bound its running time in Section 2.4.

2.1 Main procedure ALG

The following algorithm ALG is the main procedure applied to the case k ≥ 8 to
design the 2-approximation algorithm CUBIC. First, to make the basic strategies
of ALG clear, see an example illustrated in Fig. 1. Remark that if an optimal
algorithm OPT and ALG (or CUBIC) find h and (at least) h/2 happy vertices,
respectively, then the approximation ratio of ALG is 2. (i) Suppose that the input
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Fig. 1. Basic strategies of ALG

cubic graph G includes a connected component of four vertices in the middle. If
ALG selects all the four vertices in the component, then it “optimally” obtains
four happy vertices, which can be regarded that ALG gets four gains (new happy
vertices), or it gets two excesses since two happy vertices are enough to achieve
2-approximation. (ii) Suppose that {v1, v2, v3, v4} ⊆ S′ and {u1, u2, u3} ⊆ V \S′

as shown in Fig. 1. For example, if u1 is selected into S′, then v1 becomes happy,
i.e., ALG gets one gain at the cost of one (vertex). As another example, if u2

is selected into S′, then only u2 becomes happy, i.e., again ALG gets one gain
at the cost of one; however, if two vertices u2 and u3 are selected, then five
vertices u2, u3, v2, v3, and v4 become happy, i.e., ALG gets five gains at the cost
of two, i.e., 2.5 gains per cost one. That is, the latter vertex-selection is more
efficient. To estimate the gain, the excess, and the efficiency of vertex-selections,
we introduce two potential functions in Section 2.2. For a vertex set S′ used in
ALG and a vertex v ∈ S′, let Nout(v) denote N(v)\S′ for short. Steps 1 and 5 in
ALG are executed only once as an initial setup and a final treatment, respectively,
and ALG iteratively executes Steps 2 through 4 as the main loop.

Algorithm ALG

Input: A cubic graph G = (V,E) and an integer k such that 8 ≤ k ≤ |V | − 1.
Output: A solution set S of exactly k vertices.

Step 1. Set S′ = ∅. If there is a proper subset S1 ⊂ V of vertices such that
|(S1, V \S1)| ≤ 3 and 7 ≤ |S1| ≤ k, then execute (a); otherwise execute (b):
(a) Choose a largest subset S1 satisfying the above condition, then set S′ =

S1 and k′ = k − |S1|.
(b) Set S′ = S1 = N [v] and k′ = k−4 for an arbitrary chosen vertex v ∈ V .

Step 2. If there is a vertex v ∈ S′ satisfying two conditions, |Nout(v)| ∈ {1, 2}
and |Nout(v)| ≤ k′, then set S′ = S′∪Nout(v) and k′ = k′−|Nout(v)|. Repeat
Step 2 until there are no such vertices.

Step 3. If |Nout(v)| = 3 for every v ∈ S′, and k′ ≥ 1, then (i) choose any pair
of two vertices v ∈ S′ and u ∈ Nout(v), (ii) set S

′ = S′∪{u} and k′ = k′−1,
and then (iii) go back to Step 2.

Step 4. If |Nout(v)| = 0 for every v ∈ S′ (i.e., G[S′] is a connected component),
and k′ ≥ 1, then (i) choose an arbitrary vertex u ∈ V \ S′, (ii) set S′ =
S′ ∪ {u} and k′ = k′ − 1, and then (iii) go back to Step 3.

Step 5. If |Nout(v)| = 2 for every v ∈ S′, and k′ = 1, then choose any vertex
u ∈ V \ S′, and set S′ = S′ ∪ {u}.

Step 6. Output S = S′.

4



2.2 Steps 2 through 4 in ALG

We closely look at the main loop. Let u1, u2, . . . , uℓ be the ℓ vertices added into
S′ in this order by Steps 2 through 5. The number ℓ of added vertices depends
on the result of Step 1, i.e., ℓ = k − |S1| if Step 1(a) is executed; otherwise,
ℓ = k − 4. When one iteration of Step 2 adds two vertices in Nout(v) into S′

simultaneously, we consider the order of those two vertices is arbitrary.
We now introduce two potential functions f and g. Intuitively, for 1 ≤ i ≤ ℓ,

f(i) means the increased number of happy vertices by adding u1, u2, . . . , ui into
S1, where S1 is the set of vertices chosen by Step 1, i.e., f(i) = #h(S1 ∪
{u1, u2, . . . , ui})−#h(S1). Then, we define g(i) = f(i)− i/2, representing an ex-
cess of the happy vertices to achieve 2-approximation. Now suppose that Step 2
adds two vertices uj and uj+1 into S′, and h ≥ 1 vertices newly become happy
by adding them. Then, we carry out the following special treatment for Step 2:
We distribute h to f(j) and f(j + 1) in a such way that f(j) = f(j − 1) + h/2
and f(j + 1) = f(j) + h/2 by allowing f(i) to have a fractional value.

As initial values, we define that f(0) is the number of happy vertices in S1

after Step 1, and then g(0) = f(0)− |S1|/2 (later, we will explain these initial
values more carefully). In the following, we observe how each step of ALG changes
the values of f and g. For convenience, let f ′(i, j) = f(i) − f(j) for i ≥ j, i.e.,
the increment difference of happy vertices during additions from uj+1 through
ui into S′. One sees that f ′(i, i) = 0 and f ′(i, 0) = f(i) hold for any i ≥ 0.
Later, we will show that, for each i, f(i) ≥ i/2, f ′(i, i− 1) ≥ 0, g(i) ≥ 0, and/or
essentially the same inequalities as these three inequalities hold, by which we can
bound the approximation ratio of CUBIC. Let us take a closer look at Step 2;
by simple calculations on the increased number of happy vertices in Step 2, we
obtain the following inequalities for f(i), f ′(i, i− 1), and g(i):

Lemma 1. Suppose that Step 2 adds only one vertex ui into S′ for i ≥ 1 such
that Nout(v) = {ui} for some v ∈ S′ and N [ui] ⊆ S′ ∪ {ui}. Then, it holds that

– f(i) ≥ f(i− 1) + 2, f ′(i, i− 1) ≥ 2, g(i) ≥ g(i− 1) + 3/2, and
– if a vertex (ui+1) will be added next into S′, then it is by either Step 2, 3,

4, or 5

Lemma 2. Suppose that Step 2 adds only one vertex ui into S′ for i ≥ 1 such
that Nout(v) = {ui} for some v ∈ S′ and N [ui] ̸⊆ S′ ∪ {ui}. Then, it holds that

– f(i) ≥ f(i− 1) + 1, f ′(i, i− 1) ≥ 1, g(i) ≥ g(i− 1) + 1/2, and
– if a vertex (ui+1) will be added next into S′, then it is by either Step 2 or 5.

Lemma 3. Suppose that Step 2 adds two vertices ui−1 and ui into S′ for i ≥ 2
such that Nout(v) = {ui−1, ui} for some v ∈ S′ and N [ui−1] ∪ N [ui] ⊆ S′ ∪
{ui−1, ui}. Then, it holds that

– f(i− 1) ≥ f(i− 2) + 3/2, f ′(i− 1, i− 2) ≥ 3/2, g(i− 1) ≥ g(i− 2) + 1,
– f(i) ≥ f(i− 1) + 3/2, f ′(i, i− 1) ≥ 3/2, g(i) ≥ g(i− 1) + 1, and
– if a vertex (ui+1) will be added next into S′, then it is by either Step 2, 3,

4, or 5.
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Lemma 4. Suppose that Step 2 adds two vertices ui−1 and ui into S′ for i ≥ 2
such that Nout(v) = {ui−1, ui} for some v ∈ S′ and N [ui−1] ∪ N [ui] ̸⊆ S′ ∪
{ui−1, ui} Then, it holds that

– f(i− 1) ≥ f(i− 2) + 1/2, f ′(i− 1, i− 2) ≥ 1/2, g(i− 1) ≥ g(i− 2),
– f(i) ≥ f(i− 1) + 1/2, f ′(i, i− 1) ≥ 1/2, g(i) ≥ g(i− 1), and
– if a vertex (ui+1) will be added next into S′, then it is by either Step 2 or 5.

We next consider Step 4 before Step 3. We can estimate f(i), f ′(i, i − 1),
and g(i) as follows after Step 4:

Lemma 5. Suppose that a vertex ui for i ≥ 1 is added into S′ in Step 4. Then,
f(i) = f(i − 1), f ′(i, i − 1) = 0, and g(i) ≥ 3/2 hold. If a vertex (ui+1) will be
added next into S′, then it is by Step 3.

The next lemma considers the case that ui for i ≥ 2 is added into S′ in
Step 3. The case where u1 is added in Step 3 will be discussed later.

Lemma 6. Assume the followings (I) and (II): (I) A vertex ui for i ≥ 2 is
added into S′ in Step 3. (II) For the previous step, either of the following three
conditions (1), (2), or (3) holds: (1) Two vertices ui−2 and ui−1 for i ≥ 3 are
added into S′ in Step 2, and g(i − 2) ≥ −2 holds. (2) A vertex ui−1 is added
into S′ in Step 2, and g(i − 1) ≥ −3/2. (3) A vertex ui−1 is added into S′ in
Step 4. Then, f(i) = f(i− 1), f ′(i, i− 1) = 0, and g(i) ≥ 0 hold. Moreover, if
a vertex (ui+1) will be added next into S′, then it is by either Step 2 or 5.

In the above lemmas, we gave recurrence formulas on f(i) and g(i). Among
them, the assumptions in Lemma 6 are crucial to show g(i) ≥ 0 holds for all
i’s, by which f(i) ≥ i/2 holds for all i’s, achieving the approximation ratio 2 of
CUBIC. This will be discussed with an analysis on Step 1 in the next subsection.

2.3 Step 1 in ALG

We first look at the case that Step 1(a) is executed. Let z be the last index
that either Step 2, 3, or 4 adds a vertex into S′, i.e., z = k − |S1| if Step 5
does not add any vertex into S′, or z = k − |S1| − 1 otherwise.

Lemma 7. If Step 1(a) is executed, then, it holds that f(i) ≥ i/2 for each
1 ≤ i ≤ z.

We next consider the case that Step 1(b) is executed. Since k ≥ 8, it holds
k′ ≥ 4 after Step 1(b). Hence, for some u0 ∈ S′, where u0 is a vertex adjacent
to v chosen in Step 1(b), Step 2 can add one or two vertices in N(u0)\S′ into
S′ as the next step, i.e., u1 must be added into S′ by Step 2. We further divide
the case into two sub-cases, (i) Step 3 or 4 adds at least one vertex uj for some
j ≥ 2 into S′, and (ii) only Step 2 adds vertices into S′ for each 1 ≤ i ≤ z.

Lemma 8. Suppose that Step 1(b) is executed, and Step 3 or 4 adds at least
one vertex uj for j ≥ 2. Then, it holds f(i) ≥ i/2 for j ≤ i ≤ z.
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The last case to consider is that only Step 2 adds vertices into S′ after
Step 1(b) (before executing Step 5). Lemma 2 gives the following corollary.

Corollary 1. Suppose that Step 2 adds u1, . . . , ui into S′ for i ≥ 1. Then f(i) =∑i
j=1 f

′(j, j − 1) ≥ i/2 holds.

We end this section by calculating the optimal number of happy vertices for
the case that Step 1(b) is executed.

Lemma 9. Suppose that Step 1(b) is executed and S∗ is an optimal solution
such that |S∗| ≥ 8. Then, #h(S∗) ≤ k − 3,

2.4 The whole algorithm

The next two lemmas calculate the number of happy vertices in a solution ob-
tained by ALG. As the worst case, we assume that Step 5 adds one vertex into a
solution, but does not obtain any new happy vertex in the following. Let ALG
denote the number of happy vertices in the solution obtained by ALG.

Lemma 10. If Step 1(a) in ALG is executed, then ALG ≥ k/2 holds.

Lemma 11. If Step 1(b) in ALG is executed, then ALG ≥ (k − 3)/2 holds.

We are now ready to describe the whole algorithm CUBIC:

Algorithm CUBIC

Input: A cubic graph G = (V,E) and an integer k such that 4 ≤ k ≤ |V | − 1.

Output: A set S of k vertices.

Step 1. If 4 ≤ k ≤ 7, then let U be the set of all (proper) subsets U ⊂ V such
that 1 ≤ |U | ≤ 4.

(1) For each U ∈ U , let SU = N [U ], and then compute #h(SU ).

(2) Let S′ = argmaxU∈U{#h(N [U ]) | |N [U ]| ≤ k}.
(3) Select an arbitrary subset S′′ of k−|S′| vertices from V \S′, then output

S = S′ ∪ S′′, and terminate.

Step 2. (Note that now k ≥ 8 holds.) Execute ALG and terminate.

The approximation ratio and the running time of the above algorithm are
given in the next theorem:

Theorem 1. The algorithm CUBIC is an O(n4)-time 2-approximation algorithm
for MaxHS on cubic graphs.
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Proof. We first estimate the approximation ratio. Let S∗ and OPT be an optimal
solution and the number of happy vertices in S∗, respectively.

First, consider the case 4 ≤ k ≤ 7. Step 1 in CUBIC investigates whether
|N [U ]| ≤ k or not for every set U ⊂ V such that |U | ≤ 4, i.e., whether the
set N [U ] is a feasible solution which makes all the vertices in U happy. Thus,
if OPT ≤ 4, then CUBIC finds an optimal solution. If 5 ≤ OPT ≤ 7, then
there must exist at least one set U of four vertices corresponding to four happy
vertices in S∗ such that N [U ] ⊆ S∗, since OPT = #h(S∗) ≥ 5 Therefore,
CUBIC exhaustively searches such U and selects all the vertices of N [U ] as a part
of a solution. Now, we obtain (at least) four happy vertices in U . Hence the
approximation ratio is at most OPT/4 ≤ 7/4 ≤ 2 for this case.

Next, consider the case k ≥ 8, i.e., ALG is executed. When Step 1(a) in
ALG is executed, OPT/ALG ≤ 2 is satisfied since ALG ≥ k/2 from Lemma 10
and clearly OPT ≤ k. When Step 1(b) in ALG is executed, OPT/ALG ≤ 2 is
satisfied again since ALG ≥ (k − 3)/2 from Lemma 11 and OPT ≤ k − 3 from
Lemma 9. Therefore, the approximation ratio of CUBIC is 2.

Now, we bound the running time of CUBIC. As a preprocessing, we construct
N [v] for every vertex v by scanning all edges. Since the input graph is cubic
and has O(n) edges, |N [v]| ≤ 4 holds for any v and this preprocessing can be
done in O(n) time. Based on this preprocessing, Step 1 of CUBIC can be done in
O(n4) time: First, U is constructed by enumerating all U ’s in O(n4) time. Then,
Step 1(1) obtains SU for each U ∈ U in constant time by merging N [v]’s for at
most four vertices v’s in U , since |N [v]| ≤ 4. Thus, Step 1(1) takes O(n4) time in
total. In Step 1(2), checking whether |SU | ≤ k, and (when it is true) computing
#h(SU ) for each U by scanning constant number of edges, respectively take
constant time. Finally, finding a maximum value among O(n4) values needs
O(n4) time. Step 1(3) is clearly done in O(n) time, since k − |S′| < k < n.

As for Step 2 of CUBIC, we bound the running time of ALG. Step 1 of
ALG can be done in O(n4) time, by enumerating O(n3) combinations of at most
three edges in the input cubic graph having n vertices and O(n) edges, and
investigating whether or not removal of each such set disconnects the input
cubic graph in O(n) time. For Steps 2 through 5 of ALG, we need to update
Nout by scanning all edges at the beginning of each step, which can be done
in O(n) time. Step 2 finds a vertex to be processed in linear time from S′,
i.e., the total time to execute Step 2 once is O(n). Steps 3 through 5 can be
executed similarly to Step 2, that is, each of those steps takes O(n) time. Since,
the number of vertices added into a solution by Steps 2, 3, and 4 is at most
k, and hence the total number of executions of these steps is O(k). Therefore,
Steps 2 through 4 spend O(nk) time in total. Step 5 is executed only once,
and takes O(n) time. Therefore, the most time-consuming part of ALG is Step 1,
and hence the running time of ALG is O(n4).

As a result, the total running time of CUBIC is O(n4). ⊓⊔

8



Fig. 2. (Left) Convex bipartite graph and (Right) its interval representation

3 Convex bipartite graphs

In this section, we design a polynomial-time algorithm for MaxHS on convex
bipartite graphs. The following is our main theorem in this section.

Theorem 2. Given an n-vertex convex bipartite graph G and an integer k,
MaxHS can be solved in O(n2 + k3n) time.

3.1 Preliminaries for convex bipartite graphs

Let G = (VU ∪ VW , E) be a convex bipartite graph with respect to VU . Suppose
that |VU | = nU , |VW | = nW , VU = {u1, u2, . . . , unU

}, VW = {w1, w2, . . . , wnW
},

and |V | = nU+nW = n. Without loss of generality, there exists a convex ordering
σ which satisfies σ(u1) < σ(u2) < · · · < σ(unU

). Let uℓi and uri be the leftmost
and the rightmost vertices in N(wi), respectively. Assume that nW vertices in
VW = {w1, . . . , wnW

} are sorted such that σ(ur1) ≤ · · · ≤ σ(urnW
) holds by the

convex ordering σ, with ties broken arbitrarily. The ordering can be computed in
linear time [6, 14]. See Fig. 2-(Left). For example, the neighborhood of w3 ∈ VW

is N(w3) = {u3, u4, u5, u6, u7} which contains five consecutive vertices in VU .
One sees that ur1 = ur2 = u5, ur3 = u7, ur4 = u9, and ur5 = u10. Also,
uℓ1 = u1, uℓ2 = u4, uℓ3 = u3, uℓ4 = u6, and uℓ5 = u5.

We map all the vertices VU and VW to intervals of integers as follows: (i) Each
ui ∈ VU is mapped to the interval int(ui) = [2i, 2i], i.e., one even integer 2i.
(ii) Each wj is mapped to the interval int(wj) = [2ℓj − 1, 2rj + 1]. Note that
this mapping of vertices to intervals is different from that for interval graphs.
It is possible that an interval corresponding to a vertex in VW intersects with
another interval corresponding to another vertex in VW , but there is no edge
between these two vertices. Although our main strategy to design the algorithm
is following and extending the ideas for the interval graphs in [11], this difference
requires us to prove several lemmas similar to those in [11]; we cannot just use
the results in [11], and/or we cannot give straightforward corollaries of them.

Let I = {int(v) | v ∈ VU ∪ VW } be a set of the n intervals, corresponding
to the n vertices in V = VU ∪ VW . If an interval I = [iℓ, ir], then we define
left(I) = iℓ and right(I) = ir. We sort those n intervals by the rightmost values
with ties broken arbitrarily, and define the sorted n intervals as I1, I2, . . . , In
from now on, i.e., right(Ii) < right(Ij) holds for 1 ≤ i < j ≤ n. See the convex
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bipartite graph in Fig. 2-(Left) again. For example, I1 = int(u1), I2 = int(u2),
I6 = int(w1), I7 = int(w2), and so on. Also, for I ′ ⊆ I, let U(I ′) = {I ∈ I ′ |
ver(I) ∈ VU}, where ver(I) represents a vertex corresponding to interval I, i.e.,
ver(I) = int−1(I). Analogously, for I ′ ⊆ I, let W (I ′) = {I ∈ I ′ | ver(I) ∈
VW }. One can verify that for any two interval sets I ′, I ′′ ⊆ I, U(I ′ \ I ′′) =
U(I ′) \ I ′′ and W (I ′ \ I ′′) = W (I ′) \ I ′′ hold, which we will repeatedly use in
the following. In Fig. 2-(Right), U(I) = {I1, I2, I3, I4, I5, I8, I9, I11, I12, I14} and
W (I) = {I6, I7, I10, I13, I15}. We call I = {I1, . . . , In} the interval representation
of the convex bipartite graph G.

Consider the interval representation I = {I1, . . . , In} of a convex bipartite
graph G = (VU ∪VW , E). Let S ⊆ VU ∪VW be a subset of vertices in G and S =
{int(v) | v ∈ S} be a subset of intervals in I. For the subset S = U(S) ∪W (S),
we say that an interval I ∈ U(S) (respectively, I ∈ W (S)) is happy with respect
to S if I ∩ I ′ = ∅ for any interval I ′ ∈ W (I) \ S (respectively, I ′ ∈ U(I) \ S).
Hence, a vertex v ∈ VU ∪ VW is happy with respect to S if and only if int(v) is
happy with respect to S. Recall that an interval int(wi) of a vertex wi in VW

may intersect with another interval int(wj) of another vertex wj in VW even if
wi is happy, whereas every interval of a vertex in VU does not intersect with
another interval of a vertex in VU by the construction of the intervals. Various
parts of the discussions in the following trace arguments in [11], and then we
obtain lemmas whose statements are the same as ones in [11]. However, the above
difference and the convexity of the input graph cause complications in proving
several properties/statements compared to [11]; roughly speaking, we need to
prove each statement, separately for each of the two sets U(I) and W (I) of
intervals, (sometimes, by different arguments).

Let H(I ′;S) be a set of happy intervals in I ′ ⊆ I with respect to S. In
the following, we provide a polynomial-time algorithm which can find a subset
S ⊆ I such that the number of happy vertices in H(I;S) is maximized for
the interval representation I of the input convex bipartite graph G. Applying a
similar argument to one in the proof of Lemma 3 in [11], for two subsets I ′ and
S of I, we can show the following (1) inclusion, and moreover (2) equivalence if
I ′ ⊆ S; the following lemma plays important roles to design our polynomial-time
algorithm for MaxHS, and indeed it is frequently used in the remaining:

Lemma 12. Consider the interval representation I = {I1, . . . , In} of a convex
bipartite graph G. Suppose that I ′ and S are subsets of I. Then, (1) H(I;S) \
I ′ ⊆ H(I \ I ′;S \ I ′) holds. (2) Furthermore, if I ′ ⊆ S, then H(I;S) \ I ′ =
H(I \ I ′;S \ I ′) holds.

Here we introduce additional notation to prove the following lemmas, where
we shall use the same notation as in [11]. Suppose that an integer k and the
interval representation I = {I1, I2, . . . , In} of a convex bipartite graph G are
given. Then, we add dummy intervals I0 = [0, 0] and In+1 = [2nU + 2, 2nU + 2]
into U(I). In the following, we assume that I has those two dummy intervals
I0 and In+1, and {I0, In+1} ⊆ U(I). For an integer i ∈ {0, 1, . . . , n + 1}, let
Ii = {I0, I1, . . . , Ii} be a subset of the first i + 1 intervals and Ii = I \ Ii =
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Fig. 3. Let S = {I2, I4, I5, I6, I7, I9, I10, I12} be a solution. Then, when I7 is observed,
I7 can be decided to be happy, but, the (un)happiness of I5 cannot be decided yet.

{Ii+1, Ii+2, . . . , In+1}. Let I− be the original interval representation of the input
convex bipartite graph G without the two dummy intervals, i.e., I− = I \
{I0, In+1}. Let S∗ be a subset of I− such that |H(I;S∗)| is maximized among
all subsets of I− of size k. Since both I0 and In+1 have no intersection with other
intervals of I, S∗ is an optimal solution of the original interval representation I−

of G. Our algorithm is based on the dynamic programming (DP) method. Our
basic strategies are as follows: To obtain an optimal solution S∗, we compute a
partial solution Si = S∗ ∩ Ii for each i ∈ {0, 1, . . . , n + 1}, and finally obtain
Sn+1 = S∗. Here, Si is contained in an optimal solution S∗, but it does not mean
that Si is an optimal set for the (sub)graph whose interval representation is Ii.

Observation 1 See the interval representation I of G in Fig. 3, including two
dummy intervals I0 and I16. Suppose for example that a (probably non-optimal)
solution S has {I2, I4, I5, I6, I7, I9, I10, I12} of k = 8 intervals. (i) Consider a
subset I7 of the eight intervals I0 through I7. One sees that we can decide that
I7 must be happy at this time since all the intervals I4 and I5 in U(I), which
have intersections with I7 are in S and furthermore all the intervals in U(I7) =
{I8, I9, I11, I12, I14, I16} have no intersection with I7 . Also, for example, I6 can
be decided to be unhappy by checking whether or not there is at least one interval
in U(I7) \ S which intersects with I7 from the right to the left. (ii) Consider a
larger subset I10 of 11 intervals. At this time, the (un)happiness of all intervals
in W (I10) can be decided. On the other hand, the (un)happiness of I9 cannot
be decided yet since it depends on W (I10) = {I13, I15}. Even if I13 is in S,
I9 is unhappy if I15 is not in S. These observations suggest to us that the left
endpoints of intervals in W (I10) play important roles.

From the above observation, in order to correctly compute Si for each i ∈
{0, 1, . . . , n+1} by observing only Ii in our DP-based algorithm, we keep integers
r, ℓ, and k′ that satisfy the following three conditions for S∗: (i) The interval
Ir ∈ U(I) has the largest right endpoint among all intervals in U(Ii) \ S∗, that
is, Ir ̸∈ S∗ and right(Ij) ≤ right(Ir) for any Ij ∈ U(Ii) \ S∗4. (ii) The interval
Iℓ ∈ W (I) has the smallest left endpoint among all intervals in W (Ii) \ S∗,

4 Recall that left(I) = right(I) for I ∈ U(I).
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that is, Iℓ ̸∈ S∗ and left(Iℓ) ≤ left(Ij) for any Ij ∈ W (Ii) \ S∗. (iii) |Si| = k′.
In the condition (i), we did not define Ir ∈ I, but Ir ∈ U(I). As will be seen
later, we need to check whether such an interval Ir intersects with an interval in
W (I). Since, by definition of the happiness of an interval, we ignore intersections
between two intervals inW (I). Thus, in order to be specific, we define Ir ∈ U(I).
The reason why we define Iℓ ∈ W (I) in the condition (ii) is similar: We need
to check whether Iℓ intersects with an interval in U(I). Since two intervals in
U(I) do not intersect, Iℓ is defined to be in W (I). The roles of Ir and Iℓ will
get clearer below.

We say that a quadruple (i, r, ℓ, k′) of integers is compatible with S∗ if i, r, ℓ,
and k′ satisfy the above three conditions (i), (ii), and (iii). For the three integers i,

r, and ℓ, let
−→
Ir = {Ii′ ∈ Ii | right(Ir) < right(Ii′)} and Ii,ℓ = Ii∪{Iℓ} for short.

Again, see Fig. 3 as an example. For I 7 and S∗ = {I2, I4, I5, I6, I7, I9, I10, I12},
ℓ = 15 and hence I7,15 = {I0, I1, . . . , I7, I15} since left(I15) < left(I13).

Consider a convex bipartite graph G and its interval representation I. Let
S∗ be an optimal solution of the original interval representation I− such that
|S∗| = k. Suppose that a quadruple (i, r, ℓ, k′) of integers is compatible with S∗.
Note thatH(I;S∗)∩Ii,ℓ = H(I;S∗)\(I\Ii,ℓ) holds. Also, Si = S∗∩Ii = S∗∩Ii,ℓ
holds since Iℓ ̸∈ S∗. Therefore, by using Lemma 12(1) we can obtain the following
lemma on H(I;S∗):

Lemma 13. H(I;S∗) ∩ Ii,ℓ ⊆ H(Ii,ℓ;Si).

Now, suppose that S⋆
i is an optimal solution of Ii,ℓ such that U(

−→
Ir) ⊆ S⋆

i ,
I0, Ir, Iℓ ̸∈ S⋆

i , and |S⋆
i | = k′. Let S⋆ = (S∗ \ Si)∪S⋆

i . Then, we can show that if
an interval I is in H(Ii,ℓ;S⋆

i ), then it must be in H(I;S⋆) ∩ Ii,ℓ, i.e., we have:

Lemma 14. H(Ii,ℓ;S⋆
i ) ⊆ H(I;S⋆) ∩ Ii,ℓ holds.

Similarly, we obtain the following inclusion:

Lemma 15. H(I;S∗) \ Ii,ℓ ⊆ H(I;S⋆) \ Ii,ℓ holds.

From Lemmas 13, 14, and 15, we obtain the following lemma:

Lemma 16. For the interval representation I of a convex bipartite graph G and
integer k, let S∗ be an optimal solution of the original interval representation I−

such that |S∗| = k. Also, let Si = S∗ ∩ Ii. Suppose that a quadruple (i, r, ℓ, k′)
of integers is compatible with S∗, and S⋆

i is an optimal solution of Ii,ℓ such that

U(
−→
Ir) ⊆ S⋆

i ⊆ Ii,ℓ \ {I0, Ir, Iℓ} and |S⋆
i | = k′. Then, there is an optimal solution

S⋆ = (S∗ \ Si) ∪ S⋆
i of I− (where S⋆ could be the same as S∗).

The above Lemma 16 enables us to maintain a partial solution for each Ii,
0 ≤ i,≤ n, in the proposed DP-algorithm: we first guess a quadruple (i, r, ℓ, k′) of
integers that is compatible with S∗, and then find a partial solution S satisfying

three conditions (i) |S| = k′, (ii) U(
−→
Ir) ⊆ S, and (iii) |H(Ii,ℓ;S)| is the maximum

among all subsets of Ii,ℓ \ {I0, Ir, Iℓ}. The details will be given in the next
subsection.
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3.2 A dynamic programming algorithm

Our algorithm uses the following three functions hin(Ii,ℓ, r, k′), hout(Ii,ℓ, r, k′)
and hmax(Ii,ℓ, k′), where i, r, ℓ, and k′ are integers such that 0 ≤ r ≤ i < ℓ ≤
n + 1 and 0 ≤ k′ ≤ k: (i) hin(Ii,ℓ, r, k′) returns the maximum of |H(Ii,ℓ,S)|
among all subsets S ⊆ Ii,ℓ \ {I0, Ir, Iℓ} such that Ii ∈ S, U(

−→
Ir) ⊆ S, and

|S| = k′. (ii) hout(Ii,ℓ, r, k′) returns the maximum of |H(Ii,ℓ,S)| among all

subsets S ⊆ Ii,ℓ \ {I0, Ir, Iℓ} such that Ii ̸∈ S, U(
−→
Ir) ⊆ S, and |S| = k′.

(iii) hmax(Ii,ℓ, k′) returns the maximum of |H(Ii,ℓ,S)| among all subsets S ⊆
Ii,ℓ \ {I0, Iℓ} such that |S| = k′. Remark that the difference between hin and
hout is that hin and hout include Ii ∈ S and Ii ̸∈ S in their conditions on the ith
interval Ii, respectively.

5

Now we focus on nU intervals in U(I); let U(I) = {Iµ1 , Iµ2 , . . . , IµnU
} such

that µj < µj+1 for 1 ≤ j ≤ nU − 1. For each i, R(i) denotes the largest index
such that IµR(i)

∈ U(Ii), i.e., IµR(i)
= Ii if Ii ∈ U(I), and IµR(i)

∈ U(Ii) but
IµR(i)+1

̸∈ U(Ii) if Ii ∈ W (I). Then, r must be (at least) in {µR(i) − k, µR(i) −
k + 1, . . . , µR(i)} if µR(i) − k > 0, and in {0, µ1, µ2, . . . , µR(i)} if µR(i) − k ≤ 0
(where I0 is the leftmost dummy interval). Otherwise, it implies |S| > k′, which
violates the condition |S| = k′ when we compute hin(Ii,ℓ, r, k′), hout(Ii,ℓ, r, k′),
or hmax(Ii,ℓ, k′). For simplicity, let L(i) be max{0, R(i)− k}.

Let hin(Ii,ℓ, r, k′) = −∞, hout(Ii,ℓ, r, k′) = −∞, and hmax(Ii,ℓ, k′) = −∞
if there exists no subset S that satisfies all the prescribed conditions for hin,
hout and hmax, respectively. We compute values hin(Ii,ℓ, r, k′), hout(Ii,ℓ, r, k′),
and hmax(Ii,ℓ, k′) by the DP method on the lexicographic order of a quadruple
(i, r, ℓ, k′). Finally, we obtain the value hmax(In,(n+1), k), which is the maximum
size of H(I;S) such that S ⊆ I− and |S| = k.

For each triple (i, ℓ, k′) of integers, hmax(Ii,ℓ, k′) is obtained as follows:

hmax(Ii,ℓ, k′) = max
r∈{µL(i),...,µR(i)}

{
hin(Ii,ℓ, r, k′), hout(Ii,ℓ, r, k′)

}
.

Below we describe how to compute the three functions hin, hout, and hmax.
Some parts of the following are very similar to corresponding arguments in [11]
for interval graphs. However, we do not omit such arguments for completeness
of the description of the proposed algorithm in this paper.

(IN) We first consider the recursive computation of hin(Ii,ℓ, r, k′), by dis-
tinguishing two cases (Case 1-1) Ii ∈ U(I) and (Case 1-2) Ii ∈ W (I). Note
that if k′ = 0, then we set hin(Ii,ℓ, r, 0) = −∞ for any i, ℓ, and r since there is
no subset S such that Ii ∈ S and |S| = 0.

(Case 1-1) Suppose that Ii ∈ S and Ii ∈ U(I). When i = 0, the leftmost
dummy interval I0 must not be in S, and r must be 0, since r ≤ i. There-
fore, for any k′ ≥ 0 and any ℓ > 0, we set hin(I0,ℓ, 0, k′) = −∞. Moreover,
hin(I(n+1),ℓ, r, k

′) is undefined for any ℓ, r, and k′, since an imposed condition
(n+1 =) i < ℓ ≤ n+1 cannot be satisfied. Thus, we here assume that 1 ≤ i ≤ n.

5 The dynamic programming algorithm for interval graphs in [11] uses two functions,
while we need three functions for convex bipartite graphs in the paper.
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Recall that for every interval I ∈ Ii−1, right(I) < left(Ii) if Ii ∈ U(I). Hence
the (un)happiness of Ii depends only on Iℓ. That is, if Ii intersects with Iℓ, then Ii
is unhappy; otherwise, Ii is happy. Here we do not care about Ir since Ir ∈ U(I)
and hence Ir does not intersect with Ii. Therefore, we compute hin(Ii,ℓ, r, k′)
from hin(I(i−1),ℓ, r, k

′ − 1) and hout(I(i−1),ℓ, r, k
′ − 1) by deciding whether Ii is

happy or not:

hin(Ii,ℓ, r, k′)

=

max
{
hin(I(i−1),ℓ, r, k

′ − 1), hout(I(i−1),ℓ, r, k
′ − 1)

}
if Ii ∩ Iℓ ̸= ∅;

max
{
hin(I(i−1),ℓ, r, k

′ − 1), hout(I(i−1),ℓ, r, k
′ − 1)

}
+ 1 otherwise.

(Case 1-2) Suppose that Ii ∈ S and Ii ∈ W (I). Recall that two dummy
intervals I0 and In+1 are in U(I), and I1 is always in U(I) by the construction of
the interval representation. Therefore, we can assume 2 ≤ i ≤ n in this case. Let

S be a subset of I−\{Ir} such that U(
−→
Ir) ⊆ S, |S| = k′, and |H(Ii,ℓ;S)| is max-

imized. Since H(Ii,ℓ;S) \ {Ii} = H(I(i−1),ℓ;S) \ {Ii}, we compute hin(Ii,ℓ, r, k′)
from hin(I(i−1),ℓ, r, k

′ − 1) and hout(I(i−1),ℓ, r, k
′ − 1) by deciding whether the

ith interval Ii is happy with respect to S. If Ii ∈ W (I) intersects with Ir ̸∈ S,
then Ii is unhappy; otherwise, Ii is happy. Here, we do not care about Iℓ, since
Iℓ ∈ W (I) and hence whether Ii ∩ Iℓ ̸= ∅ or not is unrelated to the happiness of
Ii. That is, we have:

hin(Ii,ℓ, r, k′)

=


max

{
hin(I(i−1),ℓ, r, k

′ − 1), hout(I(i−1),ℓ, r, k
′ − 1)

}
if Ii ∩ Ir ̸= ∅;

max
{
hin(I(i−1),ℓ, r, k

′ − 1), hout(I(i−1),ℓ, r, k
′ − 1)

}
+ 1 otherwise.

Remark that the above formula is very similar to the one in (Case 1-1), but
the condition Ii ∩ Ir ̸= ∅ is different from the one Ii ∩ Iℓ ̸= ∅ in (Case 1-1).

(OUT) We next consider the recursive computation of hout(Ii,ℓ, r, k′), by
distinguishing two cases (Case 2-1) Ii ∈ U(I) and (Case 2-2) Ii ∈ W (I).
In the following, let S be a subset of Ii,ℓ \ {I0, Ir, Ii, Iℓ} such that U(

−→
Ir) ⊆ S,

|S| = k′, and |H(Ii,ℓ;S)| is maximized.
(Case 2-1) Suppose that Ii ̸∈ S and Ii ∈ U(I). First we show H(Ii,ℓ;S) =

H(Ii−1,ℓ;S). Since Ii ̸∈ S,H(Ii,ℓ;S) = H(Ii,ℓ;S)\{Ii} holds. Lemma 12(1) gives
H(Ii,ℓ;S) \ {Ii} ⊆ H(Ii,ℓ \ {Ii};S \ {Ii}) = H(Ii−1,ℓ;S). Namely, H(Ii,ℓ;S) ⊆
H(Ii−1,ℓ;S) holds. Since Ii does not intersect with any interval in Ii−1,H(Ii,ℓ;S)
includes every interval in H(Ii−1,ℓ;S), i.e., H(Ii−1,ℓ;S) ⊆ H(Ii,ℓ;S) holds. As
a result, we have H(Ii,ℓ;S) = H(Ii−1,ℓ;S).

Observe that r in hout(Ii,ℓ, r, k′) must be i by the assumption U(
−→
Ir) ⊆ S of

hout and Ii ̸∈ S. Therefore, we can calculate hout(Ii,ℓ, r, k′) as follows:

hout(Ii,ℓ, r, k′) =

{
hmax(I(i−1),ℓ, k

′) if r = i;

−∞ otherwise.
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(Case 2-2) Suppose that Ii ̸∈ S and Ii ∈ W (I). Again, we can assume that
2 ≤ i ≤ n. We further consider the following two cases: (i) left(Ii) < left(Iℓ),
and (ii) left(Ii) ≥ left(Iℓ).

(i) Suppose that left(Ii) < left(Iℓ). We showH(Ii,ℓ;S) = H(Ii−1,i;S) holds.
First, we show the following inclusion H(Ii,ℓ;S) ⊆ H(Ii−1,i;S). From the def-
inition Iℓ ̸∈ S, H(Ii,ℓ;S) = H(Ii,ℓ;S) \ {Iℓ} holds. Lemma 12(1) gives the
following inclusion: H(Ii,ℓ;S) \ {Iℓ} ⊆ H(Ii,ℓ \ {Iℓ};S \ {Iℓ}) = H(Ii;S). Since
I(i−1),i = Ii, H(Ii,ℓ;S) ⊆ H(Ii−1,i;S) holds. Next, we show that H(Ii−1,i;S) ⊆
H(Ii,ℓ;S). The assumption Ii ̸∈ S means that right(I ′) < left(Ii) for any
interval I ′ ∈ H(Ii−1,i;S), i.e., I ′ intersects with neither Ii nor Iℓ. Therefore,
I ′ ∈ H(Ii,ℓ;S). It follows that H(I(i−1),i;S) ⊆ H(Ii,ℓ;S). Thus, in this case,
H(Ii,ℓ;S) = H(I(i−1),i;S) holds.

(ii) Suppose that left(Ii) ≥ left(Iℓ). A very similar argument to the above (i)
can be made: Since Ii ̸∈ S, H(Ii,ℓ;S) = H(Ii,ℓ;S) \ {Ii} holds. Therefore,
by Lemma 12(1), H(Ii,ℓ;S) = H(Ii,ℓ;S) \ {Ii} ⊆ H(Ii,ℓ \ {Ii};S \ {Ii}) =
H(I(i−1),ℓ;S). Next, the assumption Iℓ ̸∈ S means that right(I ′) < left(Iℓ) for
any interval I ′ ∈ H(I(i−1),ℓ;S), i.e., I ′ intersects with neither Ii nor Iℓ. There-
fore, I ′ ∈ H(Ii,ℓ;S), i.e., H(Ii−1,i;S) ⊆ H(Ii,ℓ;S) holds. Thus, H(Ii,ℓ;S) =
H(I(i−1),ℓ;S) holds for this case too.

From (i) and (ii), we can calculate hout(Ii,ℓ, r, k′) as follows:

hout(Ii,ℓ, r, k′)

=

max
{
hin(I(i−1),i, r, k

′), hout(I(i−1),i, r, k
′)
}

if left(Ii) < left(Iℓ),

max
{
hin(I(i−1),ℓ, r, k

′), hout(I(i−1),ℓ, r, k
′)
}

if left(Ii) ≥ left(Iℓ).

Running time. We bound the running time of our algorithm for convex bipar-
tite graphs. As mentioned before, given a convex bipartite graph G, the convex
ordering of G can be computed in O(n+m) time [6, 14]. The interval represen-
tation I of G can be obtained in O(n +m) time. We can sort intervals in I in
increasing order based on their right endpoints by an O(n)-time integer sorting
algorithm, e.g., [10], since each right endpoint is an integer ranging from 0 to
2n+1. For each integer i ∈ {0, . . . , n+1}, we construct Ii and Ii in O(n2) time.

We then bound the running time to compute three values hin(Ii,ℓ, r, k′),
hout(Ii,ℓ, r, k′), and hmax(Ii,ℓ, k′) for each integers i, r, ℓ and k′. Recall that
i ∈ {0, . . . , n+ 1} and k′ ∈ {0, . . . , k}. Also, r is in {µL(i), . . . , µR(i)} of at most
k + 1 integers. One sees that for each i, R(i) and hence L(i) can be obtained in
O(n) time, by looking at U(Ii) and Ii. Hence, in total, we can obtain all R(i)’s
and L(i)’s in O(n2) time. Let us consider ℓ. For each i, the interval Iℓ can be
chosen from a set I ′ ⊆ Ii of size at most k + 1, where I ′ consists of the first
k+ 1 intervals of Ii sorted in increasing order of their left endpoints; otherwise,
from the definition of Iℓ, an optimal solution S∗ of I has size at least k + 1, a
contradiction.

Let (i, r, ℓ, k′) be a quadruple of those integers. For all quadruples (i, r, ℓ, k′),
the values hin(Ii,ℓ, r, k′) and hout(Ii,ℓ, r, k′) in each case can be computed in
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O(k3n) time. Also, for all triples (i, r, k′), hmax(Ii,ℓ, k′) can be computed in
O(k3n) time. Finally, by taking value hmax(In,n+1, k) in O(1) time, we obtain
the maximum number of happy vertices for the given convex bipartite graph G
and integer k. The total running time of our algorithm is O(n2 + k3n).

4 Concluding remarks

For MaxHS, we designed a polynomial-time 2-approximation algorithm for cubic
graphs and a polynomial-time algorithm for convex bipartite graphs. Some open
problems are listed as follows: (i) Are faster approximation/exact algorithms
possible for cubic graphs and convex bipartite graphs? (ii) Can we design ap-
proximation algorithms with a smaller approxixmation ratio than 2 for cubic
graphs and (2∆+1) for general graphs? (iii) Is it possible to design polynomial-
time algorithms for other graph classes? (iv) Can we show any inapproximability
of MaxHS?

Acknowledgments. The work was partially supported by the NSERC Canada,
and JSPS KAKENHI Grant Numbers JP22K11915 and JP24K02902.

References

1. Akanksha Agrawal, N. R. Aravind, Subrahmanyam Kalyanasundaram, An-
jeneya Swami Kare, Juho Lauri, Neeldhara Misra, and I. Vinod Reddy. Parame-
terized complexity of happy coloring problems. Theor. Comput. Sci., 835:58–81,
2020.

2. N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. Lin-
ear time algorithms for happy vertex coloring problems for trees. In Veli Mäkinen,
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