

Key Sentence Extraction from Single Document
based on Triangle Analysis in Dependency Graph

Yanting LI Graduate School of Information Science, Kyushu Sangyo University
Kai CHENG Graduate School of Information Science, Kyushu Sangyo University
 chengk@is.kyusan-u.ac.jp, http://www.is.kyusan-u.ac.jp/~chengk/

Abstract— Document summarization is a technique aimed to

automatically extract main ideas from electronic documents. In

this paper, we propose a novel algorithm, called TriangleSum for

key sentence extraction from single document based on graph

theory. The algorithm builds a dependency graph for the underly-

ing document based on co-occurrence relation as well as syntactic

dependency relations. The nodes represent words or phrases of

high frequency, and edges represent dependency, or co-occurrence

relations between them. The clustering coefficient is computed

from each node to measure the strength of connection between the

node and its neighborhood nodes in a graph. By identifying trian-

gles of nodes in the graph, a part of the dependency graph can be

extracted as marks of key sentences. At last, a set of key sentences

that represent the main document information can be extracted.

Keywords— document summarization; key sentence; dependency

structure analysis; clustering coefficient; triangle finding

I. INTRODUCTION

With the fast increase of electronic documents available

on the network, techniques for making efficient use of such

documents become increasingly important. Document sum-

marization is a technique aimed to extract main ideas from

electronic documents so that it is easy to get gist of the under-

lying document. Document summarization is related to the

issues of keywords or key phrases extraction, or text decom-

position [4][6]. Basically there are two approaches for docu-

ment summarization: extraction and abstraction. Extraction

techniques merely copy the information deemed most im-

portant to the summary, while abstraction involves para-

phrasing sections of the source document. In general, abstrac-

tion can condense a text more strongly than extraction, but it is

harder to achieve than extraction approach.

Some of the well-known approaches to extractive docu-

ment summarization utilize supervised learning algorithms

that are trained on collections of “ground truth” summaries

built for a relatively large number of documents. However,

they cannot be adapted to new languages or domains without

training on each new type of data.

Sentence extraction is a technique used for automatic

summarization where statistical heuristics are used to identify

the most salient sentences in a document. Sentence extraction

is a cost-efficient approach compared to more

knowledge-intensive approaches where additional knowledge

bases such as ontology or linguistic knowledge are required.

In short, sentence extraction works as a filter which allows

only important sentences to pass.

In the early seminal research [1], H. P. Luhn proposed to

assign more weight to sentences at the beginning of the doc-

ument or a paragraph. Edmundson stressed the importance of

title-words for summarization and proposed to employ

stop-words list in order to filter out uninformative words of

low semantic content [2]. He also distinguished the differ-

ences between bonus words and stigma words, i.e. words that

probably occur together with important or unimportant infor-

mation, i.e. words which occur significantly frequent in the

document. With large linguistic corpora available today, the

tf–idf value which originated in information retrieval, can be

successfully applied to identify the keywords of a text: If for

example the word "cat" occurs significantly more often in the

text to be summarized (TF = "term frequency") than in the

corpus (IDF means "inverse document frequency"; here the

corpus is meant by "document"), then "cat" is likely to be an

important word of the text; the text may in fact be a text about

cats.

KeyGraph is a technique for keyword extraction from

machine readable documents developed by Ohsawa [4][5].

KeyGraph is based on occurrence frequency and the

co-occurrence relation between any two words in the docu-

ment. The algorithm includes the following steps. Firstly, all

the words with high occurrence frequency will be extracted,

denoted by HighFreq. For any words in the HighFreq, their

co-occurrence frequency will then be calculated. The pairs of

words which have high value of co-occurrence frequency are

connected by edge so that an undirected word graph is formed.

In this undirected graph, the nodes represent the words, and

the edges represent the relationship among these words. The

last step is the calculation of co-occurrence frequency be-

tween any two words and the graph. Keywords in the docu-

ment can be extracted as a fix number of words after pro-

cessing.

In this paper, we propose a graph theory based novel al-

gorithm for the task of single document summarization. Our

algorithm extends the KeyGraph algorithm [4] for automatic

keyword extraction in the following ways: Firstly, a depend-

ency graph is built based on the extracted words with high

frequency, and the dependency relationship between words.

We introduce syntactic dependency relations among words so

that key sentences instead of individual keywords can be ex-

62 九州産業大学情報科学会誌　10巻1号 (2011年11月)

tracted. Secondly, we extract heaviest triangles as anchor

point of key sentences. Secondly, clustering coefficient is

computed to measure the importance of each node. Thirdly,

strongly connected components of the dependency graph will

be extracted in terms of triangles based on the network’s tran-

sitivity.

The goal of key sentence extraction is to identify key sen-

tences that best summarize the main ideas of the underlying

document. To do this, we employ techniques of natural lan-

guage process to extract words of high occurrence frequency

in the document and syntactic dependency relations as links

between words. As a result, a dependency graph is obtained.

Then, we do analysis on the graph mathematically to find

closely connected words in the graph.

Figure 1. Framework of Key Sentence Extraction

The framework of our proposal consists of three main

steps (Figure 1). Firstly, a dependency graph is built based on

the extracted words with high frequency, and the dependency

relationship between them. We introduce syntactic depend-

ency relationship among words so that key sentences instead

of individual keywords can be extracted. Secondly, the heavi-

est triangles are extracted as anchor points of key sentences.

Here, a modified version of clustering coefficient to measure

the importance of each vertex so that partial dependency

graph will be extracted. Thirdly, strongly connected compo-

nents of the partial dependency graph will be extracted in

terms of triangles based on the network’s transitivity.

II. PRELIMINARY DEFINITIONS

In this section, we begin with the introduction of some

important definitions.

A. Co-occurrence Frequency

Co-occurrence is important indicator in linguistics where

terms, stems, and concepts that co-occur more frequently tend

to be related to each other. Since co-occurrence in linguistic

sense can be interpreted as an indicator of semantic proximity

or an idiomatic expression, it has been used in a number of

techniques, such as keyword-brand associations, brand visi-

bility across search engines, co-citation of products and ser-

vices, search volume co-occurrence, positioning of documents

in search results pages, keywords research and terms discov-

ery, analysis of seasonal trends, design of thematic sites.

Co-occurrence can be global, extracted from databases, or

local, extracted from individual documents or sentences; or

fractal, extracted from self-similar, scaled distributions. In this

dissertation, we will use the local meaning of co-occurrence

which two words are said to be co-occurred if they occur in

the same sentence and the distance between them is less than

a given threshold, for example, less than a given threshold 1.






otherwise,0

in oadjacent t is ,1
),,(

kji

kji

sww
swwco

B. Dependency Frequency

A document is defined as a set of sentences, denoted by D

= {s1, s2, …,sm}, where sk (k=1, 2,…, m) is called a sentence of

D. A word wi is said to be dependent on word wj or simply wi

depends on wj in sentence sk if wi is syntactically modified by

word wj, denoted by wi → wj. For example, in sentence

“Tom sent three letters to Jim this week” , Tom→sent, sent→
letters, letters (to) →Jim.

Let dep(wi, wj, sk) be the indicator function of dependency

relationship defined as follows:






otherwise,0

in on depends ,1
),,(

kji

kji

sww
swwdep

Since in our following analysis, the direction of dependency is not

important, we ignore the direction of dependency and define the

un-directed dependency relation of wi and wj in sentence sk in the

following equation:

),,(),,(),,(kjikijkji swwdepswwdepswwdp 

The dependency frequency between wi and wj in docu-

ment D can be defined as below:

),,(),,(),(
1

kji

m

k

kjiji swwdpswwcowwdf 


STAR

T

Morphological

Analysis

V=getHighFreq(D,λ)

E1=getCoOccur(D)

Dependency

Structure Analysis

E2=getDepFreq(D,δ)

D={s1,s2,..,sm}

G=buildDepGraph(V, E1∪E2)

ClusteringCoefficient(G)

T=getTriangle (G)

End

S=getKeySentences (T)

Key Sentence Extraction from Single Document based on Triangle Analysis in Dependency Graph 63

C. Word Frequency

The word frequency or term frequency of a word w in

document D is the occurrence frequency of w in D, denoted

by tf(w). Let Stop be the set of stop words. Let HighFreq be

such a set of words in D that any w∊HighFreq and w∉Stop

satisfies that tf(w) > δfor some δ> 0.

D. Dependency Graph

A dependency graph of a document D is a directed graph

G = (V, E), where V is a set of nodes and E is a set of edges,V

= HighFreq, E = {(wi, wj) | df(wi, wj)>λ, for some λ>0}.

In other words, G is a weighted directed graph whose nodes

represent high frequency words in D and edges represent the

dependency relations in between a pair of words. The de-

pendency weight (df) of graph G=(V, E) can be denoted by

the following equation:

E. Clustering Coefficient

Clustering coefficient (or ccf for short) is a measure of

degree to which nodes in a graph tend to cluster together in

graph theory. This was proposed by Watts and Strogatz in

1998[1] for analyzing the social network in real world. There

are two versions of this measure: the global and the local. The

global version was designed to give an overall indication of

the clustering in the network, whereas the local gives an indi-

cation of the connectivity of single nodes. In this paper, we

only consider local clustering coefficient.

Given an undirected graph G = (V, E), where V is a set of

nodes, and E is a set of directed edges between nodes. The eij

=(vi, vj) is an edge between node vi and vj. The neighborhood

N(vi) for a node vi is defined as its immediately connected

neighbors as follows:

}),(|{)N(i Evvevv jiijj 

Let d(vi) be the degree of node v, i.e. d(vi)=|N(vi)|. The de-

gree d(vi) of node vi is the number of nodes adjacent to vi. The

local clustering coefficient measure for undirected graphs is

defined as the probability that a random pair of its neighbors

is connected by an edge, i.e.:













2

|)(|

|}),(,|{|
)(

i

jkikjjk

vN

EevNvve

ivccf

A complete subgraph of three nodes of G can be consid-

ered as a triangle. Let λ(vi) be the number of triangles includ-

ing node vi. A triple at a node vi is a path of length two for

which vi is the center node. Let τ(vi) be the number of triples

on vi ∊V. In other words, τ(vi) is the number of subgraphs (not

necessarily induced) with 2 edges and 3 nodes, one of which

is vi and such that vi is adjacent to both edges. We can also

define the clustering coefficient of node vi as

.)(

)(
)(

i

i

v

v

ivccf 




The value of clustering coefficient is a real number be-

tween 0 and 1. The maximal value is 1 when every neighbor

connected to vi is also connected to every other node within

the neighborhood, and the minimal ccf is 0 if none of the

nodes connected to vi connects to each other.

Figure 2. Examples of Clustering Coefficient

Figure 2. gives some examples for how to calculate the

clustering coefficient for a single node. The degree of node vi

(dark) is 3, i.e. it has three neighbors (white). The number of

edges between the 3 nodes is 3, 2, and 0 from left to tight. So

the ccfs are 1, 1/3 and 0 respectively.

III. SINGLE DOCUMENT SUMMARIZATION

Now we propose algorithms for single document summa-

rization. Given a document D and a set of stop words. To

summarize D, we begin by syntax analysis of D and build a

dependency graph G for D. Then compute local clustering

coefficient for each node of G. Delete nodes with clustering

coefficient less than a threshold and obtain graph G’. Indentify

all triangle in G’ whose dependency weight below a threshold.

Suppose these obtained triangles form a set

T={T1,T2,T3,T4……Ti}. Indentify sentences in document D

where the extracted triangles are anchored.

1. N(vi): neighborhood of node vi

2. d(vi): degree of node vi

3. df(wi, wj): dependency frequency between wi node wj

4. tf(wi): word frequency or term frequency of word wi

Algorithm TriangleSum

Input:

– D: documents to be summarized,

– S: a set of stop words.

– δ: threshold for high frequent words

– λ: threshold for high frequent dependency relations

– μ: threshold of clustering coefficient

– t: number of triangles to extract

Output:

– S: a set of key sentences

Procedure:

1）. Process D and construct dependency graph G=(V, E),where

V = getHighFreq(D, δ) - S;

ccf=1 ccf=1/3 ccf=0

v v v





Evv

ji

ji

vvdfGdf
),(

),()(

64 九州産業大学情報科学会誌　10巻1号 (2011年11月)

E = getDependency(D, λ);

2）. For each e ∊ E, if {e} is a cut, E=E-{e}

3）. For each v ∊ V, if d(v)=0, V=V-{v}

4）. For for v ∊ V compute ccf(v)

5）. If ccf(v) <μ then V=V-{v}

6）. Do breadth-first search on each connected

partial graphs of G and extract all triangles

T

7）. For each triangle Ti ∊ T and compute df(Ti),

dependency weight of Ti

8）. Extract t triangles {T1, T2, …, Tt} with larg-

est dependency weight

9）. Identify sentences that contain at least one

triangle

Figure 3. Algorithm of Document Summarization

With the extracted triangles, summarization of a docu-

ment can be easily approached in different ways.

 Entrance sentences. Extract sentences on the entrance of

the paragraphs containing more triangles. The rationale

behind this approach is that bushy paths (or paths con-

necting highly connected paragraphs) are more likely to

contain information central to the topic of the article.

 Anchored sentences. Extract sentences anchored with

more triangles. In this approach, triangles are used to in-

dicate important sentences.

For example, given the following document, we can con-

struct a TriangleSum as shown in Figure 4. . Based on this

graph, we can extract two triangles. Two triangle are A1 = {海
軍，空母，派遣}, A2 = {海軍，軍事演習，行う}. Based

on these triangles, we can extract the first sentence as one

summarization.

米海軍は昨年１０月にも韓国海軍との合同軍事

演習を行うため、黄海に空母「ジョージ・ワシン

トン」を派遣しているが、偶発的な軍事衝突が起

きる危険性の高まる中での派遣は初めてだ。

Figure 4. Example of TriangleSum

 To implement the proposed algorithm, we need efficient

computation of local clustering coefficient for each node in V

and extraction of all triangles from each connected partial

graphs. Both require efficient algorithm for triangle identifica-

tion. Next we will describe a breadth-first search based trian-

gle identification algorithm.

A triangle is represented as a triple <u, v, w> where u, v, w

∊ V and each node is adjacent to the other two. To identify a

triangle, we do a breadth-first traversal for the given graph,

from a starting node. Check nodes in the neighborhood to see

if any of them are connected to each other.

Figure 5. Example for Triangle Identification

In Figure 5. after v is visited, the neighborhood N(v) of v

will enter the queue. At this time, we can check if there are

any edges between them. An edge between two neighbors

indicates a triangle. In this example, there is an edge between

node u and w. Since both of u and w are neighbors of v, <u, v,

w> is identified as a triangle.

IV. CONCLUDING REMARKS

In this paper we proposed a novel algorithm for automatic

extraction of key sentences from electronic documents. The

proposed algorithm works on single document without train-

ing data so that cost can be reduced. This algorithm efficiently

extracts heavy triangles as anchor points of key sentences

from the input document. These triangles can then be used to

identify sentences that central to the topic of the document.

 We have described an efficient method which does not

need to build any dictionary or training data or exam-

ples before the key sentences extracted from a docu-

ment to extract triangles from connected graph. When run-

ning on real world documents, we have to tune some thresh-

olds such as λ,δandμ.

REFERENCES

[1] H. P. Luhn The Automatic Creation of Literature Abstracts.
IBM Journal: pp.159-165. April 1958.

[2] H. P. Edmundson. New Methods in Automatic Extracting.
Journal of the ACM 16 (2), pp. 264-285, 1969.

[3] D. J. Watts and Steven Strogatz. Collective dynamics of
'small-world' networks. Nature 393(1998): 440–442.

[4] Y. Ohsawa, N. E. Benson and M. Yachida. KeyGraph: Auto-
matic indexing by co-occurrence graph based on building

米
海軍

空母

派遣

韓国

軍事演習

行う

v

u

w

Key Sentence Extraction from Single Document based on Triangle Analysis in Dependency Graph 65

construction metaphor, IEEE ADL'98, pp.12-18.

[5] Y. Ohsawa, Nels E. Benson and M. Yachida. KeyGraph: Au-
tomatic Indexing by Segmenting and Unifing Co-occurrence
Graphs. In IEICE, Vol.J82-D-1, No.2, pp.391-400, 1999.

[6] G. Salton, J. Allan, C. Buckley, and A. Singhal. Automatic
analysis, theme generation, and summarization of machine
readable texts. Science 264(5164):1421-6, June 1994.

[7] J. Carbonell and J. Goldstein. The use of MMR, diversi-
ty-based reranking for reordering documents and producing
summaries. In Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in in-
formation retrieval (SIGIR '98). pp. 335-336. 1998.

[8] C.-Y. Lin, Training a selection function for extraction. In Pro-
ceedings of CIKM ’99, pp. 55–62, New York, NY, USA.

[9] D. Kawahara, S. Kurohashi and K. Hasida. Construction of a
Japanese Relevance-tagged Corpus, In Proceedings of the 3rd
International Conference on Language Resources and Evalua-
tion, pp.2008-2013, 2002.

[10] Xiaojun Wang, Jianguo Xiao (2010), Exploiting Neighbor-
hood Knowledge for Single Document Summarization and
Keyphrase Extraction, ACM Transactions on Information
Systems, Vol. 28, No. 2, Article 8.

[11] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.
SIAM Journal on Computing, 7(4):413–423, 1978.

[12] M. Latapy, Main-memory triangle computations for very large
(sparse (power-law)) graphs, Theoretical Computer Science,
v.407 n.1-3, p.458-473, November, 2008.

[13] D. J. Watts and Steven Strogatz. Collective dynamics of
'small-world' networks. Nature 393(1998): pp440–442.

[14] Y. Ohsawa, N. E. Benson and M. Yachida. KeyGraph: Auto-
matic indexing by co-occurrence graph based on building
construction metaphor, IEEE ADL'98, pp.12-18.

[15] G. Salton, J. Allan, C. Buckley, and A. Singhal. Automatic
analysis, theme generation, and summarization of machine
readable texts. Science 264(5164):1421-6, June 1994.

[16] J. Carbonell and J. Goldstein. The use of MMR, diversi-
ty-based reranking for reordering documents and producing
summaries. In Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in in-
formation retrieval (SIGIR '98). pp. 335-336. 1998.

[17] Lin, C.-Y. (1999). Training a selection function for extraction.
In Proceedings of CIKM ’99, pages 55–62, New York, NY,
USA.

[18] J. M. Conroy and D. P. O’leary, Text summarization via hid-
den markov models. In Proceedings of SIGIR ’01, pages 406–
407, New York, USA, 2001.

[19] T. Schank and D. Wagner (2004). Approximating clustering
coefficient and transitivity. In Journal of Graph Algorithms
and Applications, Vol. 9, pp. 265-275.

[20] B. Li, L. Zhou, S. Feng and K. Wong. A unified graph model
for sentence-based opinion retrieval. In proceeding of ACL’10
of the 48th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 1367-1375, 2010.

66 九州産業大学情報科学会誌　10巻1号 (2011年11月)

