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Abstract. We investigate autonomous mobile robots in the Euclidean
plane. A robot has a function called target function to decides the desti-
nation from the robots' positions, and operates in Look-Compute-Move
cycles, i.e., identi�es the robots' positions, computes the destination by
the target function, and then moves there. Robots can have di�erent
target functions. Let Φ and Π be a set of target functions and a prob-
lem, respectively. If the robots whose target functions are chosen from Φ
always solve Π, we say that Φ is compatible with respect to Π. Suppose
that Φ is compatible with respect to Π. Then two swarms controlled
by (possibly di�erent) target functions in Φ can merge to form a larger
swarm, and a broken robot can be replaced with another robot with any
target function in Φ, keeping the correctness of solving Π. We investi-
gate the convergence, the gathering, and some fault tolerant convergence
problems, assuming crash failures, from the view point of compatibility.

Keywords: Autonomous mobile robot · Compatibility · Convergence ·
Crash fault · Gathering.

1 Introduction

Over the last three decades, swarms of autonomous mobile robots have obtained
much attention in a variety of contexts. Among them is understanding solvable
problems by a swarm consisting of many simple and identical robots in a dis-
tributed manner, which has been constantly attracting researchers in distributed
computing society [1�3, 5, 6, 8�20].

Many of the works mentioned above adopt the following robot model. The
robots look identical and indistinguishable. Each robot is represented by a point
that moves in the Euclidean plane. It lacks identi�er and communication de-
vices, and operates in Look-Compute-Move cycles. When a robot starts a cycle,

⋆ Due to the space limitation, we omit most of the proofs and some contributions. The
full version of the paper [4] contains them.
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it identi�es the multiset of the robots' positions in its local x-y coordinate system
such that it is right-handed, and its origin is always the position of the robot,
computes the destination point using a target function3 based only on the mul-
tiset identi�ed, and then moves towards the target position. If each cycle starts
at a time t and �nishes, reaching the target position, before (not including) t+1,
for some integer t, the scheduler is said to be semi-synchronous (SSYNC). If
cycles can start and end any time (even on the way to the target point), it is
asynchronous (ASYNC).

This paper investigates several convergence problems, e.g., [2, 8�10, 13, 14, 16,
18]. The simplest convergence problem requires the robots to converge to a single
point. For the SSYNC model, the problem is solvable for robots with unlimited
visibility [18], and is also solvable for robots with limited visibility [2].

Under the ASYNC model, it is solvable by a target function called CoG,
which always outputs the center of gravity of the robots' positions [8]. In [8],
the authors also showed that CoG correctly works under the sudden-stop model,
under which the movement of a robot towards the center of gravity might stop on
the way after traversing at least some �xed distance. This implies that the robots
can correctly converge to a point, even when they are controlled by di�erent
target functions as long as they always move robots towards the current center
of gravity over distance at least some �xed constant. This idea is extended in [10]:
The authors proposed the δ-inner property4 of target functions, and showed that
the robot system converges to a point if all robots take δ-inner target functions,
provided δ ∈ (0, 1/2]. Finally [16] gives a convergence algorithm for robots with
limited visibility under the ASYNC model.

Consider a problem Π and a set of target functions Φ. If the robots whose
target functions are chosen from Φ always solve Π, we say that Φ is compatible
with respect to Π. For example, every (non-empty) set of (1/2)-inner functions
is compatible with respect to the convergence problem [10].

If a singleton {ϕ} is compatible with respect toΠ, we abuse to say that target
function ϕ is an algorithm5 forΠ. If a set Φ of target functions is compatible with
respect to Π, every target function ϕ ∈ Φ is an algorithm for Π. (The converse
is not always true.) Thus there is an algorithm for Π, if and only if there is a
compatible set Φ with respect to Π. We say that a problem Π is solvable, if there
is a compatible set Φ with respect to Π, meaning that there is an algorithm for
Π.

We would like to �nd a large compatible set Φ with respect to Π. That Π has
a large compatible set with respect to Π implies that Π has many algorithms.

3 Roughly, a target function is a function from (R2)n to R2, where R is the set of real
numbers and n is the number of robots, i.e., given a snapshot in (R2)n, it returns a
destination point in R2. Later, we de�ne a target function a bit more carefully.

4 Let P , D, and o be the multiset of robots' positions, the axes aligned minimum box
containing P , and its center, respectively. De�ne δ ∗D = {δx + (1 − δ)o : x ∈ D}.
A function ϕ is δ-inner, if ϕ(P ) is included in δ ∗D for any P .

5 Here, we abuse term �algorithm,� since an algorithm must have a �nite description.
A target function may not. To compensate the abuse, we insist on giving a �nite
procedure when we show the existence of a target function.



The di�culty of problems might be compared by the sizes of their compatible
sets. A problem Π with a large compatible set Φ seems to have some practical
merits. Two swarms both of which are controlled by target functions in Φ (which
may be produced by di�erent makers) can merge to form a larger swarm, keeping
the correctness of solving Π. When a robot breaks down, we can safely replace
it with another robot, as long as it is controlled by a target function in Φ.

Fault Tolerant Convergence Problems. This paper investigates three fault-
tolerant convergence problems, besides the convergence and the gathering prob-
lems. We consider only crash faults: A faulty robot can stop functioning at any
time, becoming permanently inactive. A faulty robot may not cause a malfunc-
tion, forever. We cannot distinguish such a robot from non-faulty ones. Let n
and f(≤ n− 1) be the number of robots and the number of faulty robots.

The fault-tolerant (n,f)-convergence problem (FC(f)) is the problem to �nd
an algorithm which ensures that, as long as at most f robots are faulty, all
non-faulty robots converge to a single point. The fault-tolerant (n,f)-convergence
problem to f points (FC(f)-PO) is the problem to �nd an algorithm which
ensures that, as long as at most f robots are faulty, all robots (including faulty
ones) converge to at most f points. All non-faulty robots need not converge
to the same point. If f faulty robots have crashed at di�erent positions, each
non-faulty robot must converge to one of the faulty robots. The fault-tolerant
(n,f)-convergence problem to a convex f-gon (FC(f)-CP) is the problem to �nd
an algorithm which ensures that, as long as at most f robots are faulty, the
convex hull of the positions of all robots (including faulty ones) converges to a
convex h-gon CH for some h ≤ f , in such a way that, for each vertex of CH,
there is a robot that converges to the vertex.

Since an algorithm for FC(1)-PO solves FC(1), the former is not easier than
the latter. (Note that for f ≥ 2, an algorithm for FC(f)-PO may not solve
FC(f).) Since an algorithm for FC(f)-PO solves FC(f)-CP, again the former is
not easier than the latter. In [8], the authors showed that, for all f ≤ n − 2,
CoG is an algorithm for FC(f) under the ASYNC model. As far as we know,
FC(f)-PO and FC(f)-CP have not been investigated so far.

Gathering Problem. The gathering problem requires the robots to gather in
the exactly the same location. For SSYNC, the gathering problem is not solvable
if n = 2. If n > 2, it is solvable, provided that all robots initially occupy distinct
positions [18]. For ASYNC, the same results hold [7]. The gathering problem
has been investigated under a variety of assumptions [1, 5, 7, 11�14].

Contributions. Let R be the set of real numbers. Formally, a target function
ϕ is a function from (R2)n to R2 ∪ {⊥} for all n ≥ 1 such that ϕ(P ) = ⊥ if and
only if (0, 0) ̸∈ P . Here, ⊥ is a special symbol to denote that (0, 0) ̸∈ P . Suppose
that a robot r identi�es a multiset P of n points, which are the positions of the
robots in its local x-y coordinate system Z, in Look phase. Then (0, 0) ∈ P .6

6 That (0, 0) ̸∈ P means an error of eye sensor, which we assume will not occur, in
this paper.



Table 1. The compatibility of a set Φ of target functions with respect to a problem Π,
taking its scale α(Φ) as a parameter. Each entry contains the status A, E, N, or ? of the
compatibility of Φ with respect to Π (and the theorem/corollary/observation/citation
number establishing the result in parentheses). Letter 'A' means that every Φ such
that α(Φ) is in the range is compatible with respect to Π. Letter 'N' means that any
Φ such that α(Φ) is in the range is not compatible with respect to Π, which indicates
the absence of an algorithm. Letter 'E' means that some Φ is compatible, while some
other is not, which indicates the existence of an algorithm. Letter '?' means that the
answer is unknown.

problem Π
scale α(Φ)

α(Φ) = 0 0 < α(Φ) < 1 α(Φ) = 1

Convergence A (Thm. 1 [8]) A (Thm. 2) E (Thm. 3)
FC(1) A ([8]) A (Cor. 1) E (Thm. 5)

FC(1)-PO A (Thm. 4) A (Thm. 4) E (Thm. 5)
FC(f) (f ≥ 2) A (Thm. 6 [8]) E (Thm. 7) E (Cor. 2)

FC(f)-CP (f ≥ 2) A (Thm. 8) A (Thm. 8) E (Trivial)
FC(2)-PO N (Thm. 9) N (Thm. 9) E (Thm. 10)

FC(f)-PO (f ≥ 3) N (Thm. 9) N (Thm. 9) ?

Gathering N (Thm. 12) N (Thm. 12) E (Thm. 11 [18])

Using its target function ϕ, r computes the target point x = ϕ(P ) in Compute
phase. Then it moves to x (̸= ⊥) in Z in Move phase.

Let the convex hull and the center of gravity of P be CH(P ) and g(P ),
respectively. For any 0 ≤ d, let d ∗ CH(P ) = {dx+ (1− d)g(P ) : x ∈ CH(P )}.
The scale α(ϕ) of a target function ϕ is de�ned by

α(ϕ) = sup
P∈(R2)n

α(ϕ, P ),

where α(ϕ, P ) is the smallest d satisfying ϕ(P ) ∈ d ∗ (CH(P )).7 Then the scale
of a set Φ of target functions is de�ned by

α(Φ) = sup
ϕ∈Φ

α(ϕ).

The only target function ϕ satisfying α(ϕ) = 0 is CoG. Thus the set Φ of
target functions satisfying α(Φ) = 0 is a singleton {CoG}. The idea of scale is
similar to that of the δ-inner property in [10], and more directly embodies the
idea behind the δ-inner target function.

Our contributions are summarized in Table 1. For example, the entry of
Convergence and α(ϕ) = 0 is A. Thus {CoG} is compatible with respect to the
convergence problem, or CoG is an algorithm for the convergence problem, as
[8] shows. Not only the case α(ϕ) = 0, but also the case 0 < α(Φ) < 1, every Φ
is compatible with respect to the convergence problem.

Organization. After introducing the robot model in Section 2, we investigate
the convergence problem in Section 3. In Section 4, we discuss the compatibilities

7 For the sake of completeness, we assume that α(ϕ, P ) = 0 when ϕ(P ) = ⊥.



of two convergence problems FC(1) and FC(1)-PO. Sections 5 and 6 respectively
investigate the compatibilities of FC(f) and FC(f)-CP for f ≥ 2. Section 7 �rst
shows that a target function ϕ is an algorithm for FC(f)-PO for f ≥ 2, only
if α(ϕ) ≥ 1. We then presents an algorithm ψ(n,2) for FC(2)-PO. Section 8
investigates the gathering problem to show the di�erence between this and the
convergence problems. We conclude the paper in Section 9.

2 The Model

Consider a robot system R consisting of n robots r1, r2, . . . , rn. Each robot ri
has its own unit of length, and a local compass de�ning an local x-y coordinate
system Zi, which is assumed to be right-handed and self-centric, i.e., its origin
(0, 0) is always the position of ri. We also assume that ri has the strong mul-
tiplicity detection capability, i.e., it can count the number of robots resides at
a point. Given a target function ϕi, each robot ri ∈ R repeatedly executes a
Look-Compute-Move cycle:

Look: Robot ri identi�es the multiset P of the robots' positions (including the
one of ri) in Zi. Since ri has the strong multiplicity detection capability, it
can identify P not only distinct positions of P .

Compute: Robot ri computes xi = ϕi(P ). (We do not mind even if ϕi is not
computable. We simply assume that ϕi(P ) is given by an oracle.)

Move: Robot ri moves to xi. We assume that ri always reaches xi before this
Move phase ends.

We assume a discrete time 0, 1, . . .. At each time t ≥ 0, the scheduler activates
some unpredictable subset (that may be none or all) of robots. Then activated
robots execute a cycle which starts at t and ends before (not including) t + 1
(unless it has crashed), i.e., the scheduler is semi-synchronous (SSYNC). Let Z0

be the global x-y coordinate system, which is right-handed and is not accessible
by any robot ri. The coordinate transformation from Zi to Z0 is denoted by γi.
We use Z0 and γi just for the purpose of explanation.

The position of robot ri at time t in Z0 is denoted by xt(ri). Then Pt =
{xt(ri) : 1 ≤ i ≤ n} is a multiset representing the positions of all robots at time
t, and is called the con�guration at t.

Given an initial con�guration P0, an assignment A of a target function ϕi
to each robot ri, and an SSYNC activation schedule, the execution of R is a
sequence E : P0, P1, . . . , Pt, . . . of con�gurations starting from P0. Here, for all
ri and t ≥ 0, if ri is not activated at t, xt+1(ri) = xt(ri). Otherwise, if it is

activated, ri identi�es Q
(i)
t = γ−1

i (Pt) in Zi, computes y = ϕi(Q
(i)
t ), and moves

to y in Zi.
8 Then xt+1(ri) = γi(y). We assume that the scheduler is fair: It

activates every robot in�nitely many times. Throughout the paper, we regard
the scheduler as an adversary.

8 Since (0, 0) ∈ Q
(i)
t by de�nition, y ̸= ⊥.



We introduce several notations. Let P ∈ (R2)n. The distinct points of P is
denoted by P . Then |P | (resp. |P |) denotes the number of points (resp. the
number of distinct points) in P . Let CH(P ) be the convex hull of P . We
sometimes denote CH(P ) by a sequence of vertices of CH(P ) appearing on
the boundary counter-clockwise. The center of gravity g(P ) of P is de�ned by
g(P ) =

∑
x∈P x/n. For two points x and y in R2, dist(x,y) denotes the Eu-

clidean distance between x and y. For a set B(⊆ R2) of points and a point
a ∈ R2, dist(a, B) = minx∈B dist(a,x). Finally, let P = {P ∈ (R2)n : (0, 0) ∈
P, n ≥ 1}. We regard P as the domain of target functions.

3 Convergence Problem

We investigate the convergence problem, provided that all robots are non-faulty.
For any 0 ≤ α ≤ 1, consider a target function CoGα de�ned by CoGα(P ) =
(1 − α)g(P ), for any P ∈ P. The scale of CoGα is α, and CoG0 = CoG. The
following theorem holds, since CoG works correctly under the sudden-stop model.

Theorem 1 ([8]). For any 0 ≤ α < 1, let Φα = {CoGα}. Then Φα is compatible
with respect to the convergence problem, or equivalently, CoGα is an algorithm
for the convergence problem.

We extend Theorem 1 to have the following theorem.

Theorem 2. Let Φ be a set of target functions such that 0 ≤ α(Φ) < 1. Then Φ
is compatible with respect to the convergence problem.

Proof. (Sketch) Let ϕi ∈ Φ be the target function taken by robot ri for i =
1, 2, . . . , n. Let α(ϕi) = αi and α = max1≤i≤n αi. Then α ≤ α(Φ) < 1. Consider
any execution E : P0, P1, . . . starting from any initial con�guration P0. We show
that Pt converges to a point.

Suppose that Pt = {x,x, . . . ,x} at some time t, i.e., |Pt| = 1. Since gt =
g(Pt) = x, Pt+1 = Pt. Thus convergence has already been achieved. We assume
without loss of generality that |Pt| ≥ 2 for all t ≥ 0.

Let At ⊆ R be the set of robots activated at time t. If xt(r) = gt for all
r ∈ At, Pt+1 = Pt holds. However, there is a robot r such that xt(r) ̸= gt since
|Pt| ≥ 2, and r is eventually activated by the fairness of scheduler. Thus, without
loss of generality, we assume that there is a robot r ∈ At such that xt(r) ̸= gt,
and that Pt+1 ̸= Pt holds for all t ≥ 0.

We denote CH(Pt) by CHt. Since α < 1, CHt+1 ⊆ CHt, which implies that
CHt converges to a convex k-gon CH (including a point and a line segment) for
some positive integer k. We show that CH is a point, i.e., k = 1.

Let p0,p1, . . . ,pk−1 be the vertices of CH aligned counter-clockwise on the
boundary. To derive a contradiction, we assume that k ≥ 2. For any pair
(i, j) (0 ≤ i < j ≤ k − 1), let L(i,j) = dist(pi,pj), and L = min0≤i<j≤k−1 L(i,j).
Since CHt converges to CH, for any 0 < ϵ≪ (1−α)L/n, there is a time instant
t0 such that, for all t ≥ t0, CH ⊆ CHt ⊆ Nϵ(CH). For any vertex p of CH,
dist(p, α ∗ CHt) > (1− α)(L/n− ϵ)− ϵ≫ ϵ, since dist(p, gt) > L/n− ϵ.



Suppose that a robot r is activated at some time t ≥ t0. Then xt+1(r) ∈
α ∗ CHt, which implies that xt+1(r) ̸∈ Nϵ(p), for any vertex p of CH. If r is
reactivated at some time t′ > t for the �rst time after t, since CHt′ ⊆ CHt and
xt′+1(r) ∈ α ∗ CHt′ , xt′+1(r) ̸∈ Nϵ(p), for any vertex p of CH. Therefore, for
any t′ > t and any vertex p of CH, xt′(r) ̸∈ Nϵ(p).

On the other hand, all robots will be activated in�nitely many times after
time t, by the fairness of scheduler. It is a contradiction to the assumption that
CHt converges to CH, since there is a time instant t′ > t such that for any robot
r and any vertex p of CH, xt′(r) ̸∈ Nϵ(p) holds. ⊓⊔

Let Φ and Φ′ be two sets of target functions. If α(Φ) < 1 and α(Φ′) < 1,
Φ,Φ′, and Φ∪Φ′ are all compatible with respect to the convergence problem by
Theorem 2. However, the following claim does not hold:

If both of Φ and Φ′ are compatible with respect to the convergence
problem, so is Φ ∪ Φ′.

To observe this fact, examine two target functions ϕT and ϕS . For a con�g-
uration P , de�ne a condition Ψ as follows:

Ψ : |P | = 7, (0, 0) ∈ P , P = T ∪ S, T is an equilateral triangle, S is a square, T
and S have the same side length, and T and S do not overlap.

[Target function ϕT ]

1. If P satis�es Ψ :

(a) If (0, 0) ∈ T , ϕT (P ) is the middle point on the line segment connecting
(0, 0) and g(T ).

(b) If (0, 0) ∈ S, ϕT (P ) = g(P ).

2. If P does not satisfy Ψ : ϕT (P ) = g(P ).

[Target function ϕS]

1. If P satis�es Ψ :

(a) If (0, 0) ∈ S, ϕS(P ) is the middle point on the line segment connecting
(0, 0) and g(S).

(b) If (0, 0) ∈ T , ϕS(P ) = g(P ).

2. If P does not satisfy Ψ : ϕS(P ) = g(P ).

Recall that g(P ), g(T ), and g(S) are the centers of gravity of P , T , and S,
respectively, and that when a robot identi�es P in Look phase, (0, 0) always in
P , which corresponds to its current position.

Let us observe that α(ϕT ) = 1. Since ϕT (P ) ∈ CH(P ) for all P , α(ϕT ) ≤ 1.
To see that α(ϕT ) ≥ 1, consider any number 0 < a < 1. It is easy to construct a

P satisfying Ψ such that dist((0,0),g(T ))
dist((0,0)),g(P )) < a, which implies that α(ϕT ) > 1− a.

Thus α(ϕT ) = 1 by the de�nition of α. By the same argument, α(ϕS) = 1.

Theorem 3. Both ΦT = {ϕT } and ΦS = {ϕS} are compatible with respect to
the convergence problem, but Φ = ΦT ∪ ΦS is not.



4 Convergence When at Most One Robot Crashes

We investigate the fault-tolerant (n, 1)-convergence problem (FC(1)) and the
fault-tolerant (n, 1)-convergence problem to a point (FC(1)-PO). There is an
algorithm for FC(1) [8], but FC(1)-PO is not easier than FC(1). We have the
following theorem, which implies the existence of an algorithm for FC(1)-PO.

Theorem 4. Let Φ be a set of target functions such that 0 ≤ α(Φ) < 1. Then Φ
is compatible with respect to FC(1)-PO.

Corollary 1. Let Φ be a set of target functions such that 0 ≤ α(Φ) < 1. Then
Φ is compatible with respect to FC(1).

Next we reconsider the target functions ϕT and ϕS .

Theorem 5. Both ΦT = {ϕT } and ΦS = {ϕS} are compatible with respect to
FC(1)-PO. However, Φ = ΦT ∪ΦS is not. Recall that α(ΦT ) = α(ΦS) = α(Φ) =
1.

5 FC(f) for f ≥ 2

We go on the fault tolerant (n, f)-convergence problem (FC(f)) for f ≥ 2. Since
CoG is an algorithm for FC(f) [8], the next theorem holds.

Theorem 6 ([8]). Suppose that f ≤ n− 1. The set Φ0 = {CoG} is compatible
with respect to FC(f), or equivalently, a set Φ of target functions is compatible
with respect to FC(f), if α(Φ) = 0.

Corollary 1 states that every set Φ of target functions such that 0 ≤ α(Φ) < 1
is compatible with respect to FC(1). In contrast, for any 2 ≤ f ≤ n − 1 and
0 < α < 1, there is a set Φ of two target functions such that (1) α(Φ) = α, (2)
each target function in Φ is compatible with respect to FC(f), but (3) Φ is not
compatible with respect to FC(f). We use target functions ξ(α,n) and ξ

′
(α,n). Let

ℓ = ⌊n−2
2 ⌋ and ℓ′ = ⌈n−2

2 ⌉. Thus ℓ+ ℓ′ = n− 2. For a con�guration P , de�ne a
condition Ψ+ by a conjunction of two conditions (i) and (ii).

Ψ+: (i) P = {p1,p2, . . . ,pn} ⊆ p1pn, where p1,pℓ+1,pℓ+2,pℓ+3 are distinct
and aligned on p1pn in this order, p1 = p2 = · · · = pℓ, i.e., the multi-
plicity of p1 is ℓ, pℓ+3 = pℓ+4 = · · · = pn, i.e., the multiplicity of pℓ+3

is ℓ′.
(ii) Let L = dist(p1,pn). Then dist(p1,pℓ+1) = 1

2L. If n is even,
dist(pℓ+1,pℓ+2) =

αn
2(α+n−1)L; otherwise, if it is odd, dist(pℓ+1,pℓ+2) =

(2α−1)n+(1−α)
2(α(n+1)−1) L.

[Target function ξ(α,n)]

1. If P satis�es Ψ+, ξ(α,n)(P ) is
(a) pℓ+2, if pℓ+1 = (0, 0),



(b) (0, 0), if pℓ+2 = (0, 0), and
(c) g(P ), otherwise.

2. If P does not satisfy Ψ+, ξ(α,n)(P ) = g(P ).

[Target function ξ′(α,n)]
1. If P satis�es Ψ+, ξ′(α,n)(P ) is

(a) (0, 0), if pℓ+1 = (0, 0),
(b) αp1 + (1− α)g(P ), if pℓ+2 = (0, 0), and
(c) g(P ), otherwise.

2. If P does not satisfy Ψ+, ξ′(α,n)(P ) = g(P ).

Theorem 7. For any 2 ≤ f ≤ n−1 and 0 < α < 1, (1) α(ξ(α,n)) = α(ξ′(α,n)) =

α, (2) both of Φ = {ξ(α,n)} and Φ′ = {ξ′(α,n)} are compatible with respect to

FC(f), but (3) Φ ∪ Φ′ is not.

Before closing this section, we examine the case α = 1.

Corollary 2. For any 2 ≤ f ≤ n − 1, there are two target functions ξ(1,n)
and ξ′(1,n) such that (1) α(ξ(1,n)) = α(ξ′(1,n)) = 1, (2) both of Φ = {ξ(1,n)} and

Φ′ = {ξ′(1,n)} are compatible with respect to FC(f), but (3) Φ ∪ Φ′ is not.

6 FC(f)-CP for f ≥ 2

We next investigate the fault tolerant (n, f)-convergence problem to a convex
f -gon (FC(f)-CP). FC(1)-CP is FC(1)-PO. FC(f)-CP seems to be substantially
easier than FC(f) (and FC(f)-PO), since the convergence of CHt to a convex f -
gon does not always mean the convergence of Pt. We have the following theorem.

Theorem 8. Let Φ be any set of target functions such that 0 ≤ α(Φ) < 1. Then
Φ is compatible with respect to FC(f)-CP for any 2 ≤ f ≤ n− 1.

Let Φ and Φ′ be any sets of target functions such that α(Φ) < 1 and α(Φ′) < 1
hold. Then all of Φ,Φ′, and Φ∪Φ′ are compatible with respect to FC(f)-CP for
all 2 ≤ f ≤ n − 1, since α(Φ ∪ Φ′) < 1, by Theorem 8. However, we cannot
extend this observation to include the case α = 1. Consider the following two
target functions τ and τ ′ for three robots.

[Target function τ ]

1. If P = {p1,p2,p3} is a triangle such that ∠p1 < ∠p2 < ∠p3, where ∠pi is
the angle of vertex pi of the triangle, τ(P ) is
(a) g(P ) if p1 = (0, 0), and
(b) p1, otherwise.

2. Otherwise, τ(P ) = g(P ).

[Target function τ ′]

1. If P = {p1,p2,p3} is a triangle such that ∠p1 < ∠p2 < ∠p3, where ∠pi is
the angle of vertex pi of the triangle, then τ

′(P ) = p1.
2. Otherwise, τ ′(P ) = g(P ).

Let Φ = {τ} and Φ′ = {τ ′}. Then α(Φ) = α(Φ′) = 1. Sets Φ and Φ′ are
compatible with respect to the fault tolerant (3, 2)-convergence problem to a
line segment, but Φ ∪ Φ′ is not.



7 FC(f)-PO for f ≥ 2

This section investigates the fault tolerant (n, f)-convergence problem to f points
(FC(f)-PO) for f ≥ 2. At a glance, FC(f)-PO looks to have properties similar
to FC(f), and readers might consider that the former would be easier than the
latter, since in the former, the non-faulty robots are not requested to converge
to a point. On the contrary, we shall see that FC(f)-PO is a formidable problem
even if f = 2.

7.1 Compatibility

We show a di�erence between FC(f) and FC(f)-PO for f ≥ 2.

Theorem 9. Let f ≥ 2. Any target function ϕ is not an algorithm for FC(f)-
PO, if 0 ≤ α(ϕ) < 1, or equivalently, Φ is not compatible with respect to FC(f)-
PO, if 0 ≤ α(Φ) < 1.

Recall that Φ = {ξ(α,n)} (or Φ′ = {ξ′(α,n)}) is compatible with respect to

FC(f) for all 2 ≤ f ≤ n − 1 and 0 ≤ α < 1 by Theorem 7. Since α(Φ) = α, by
Theorem 9, we have:

Corollary 3. Neither Φ nor Φ′ is compatible with respect to FC(f)-PO, for all
f ≥ 2 and 0 ≤ α < 1.

7.2 Algorithm for FC(2)-PO

In Section 7.1, we showed that, for any f ≥ 2, there is no FC(f)-PO algorithm
whose scale is less than 1. It is a clear di�erence between FC(f)-PO and FC(f),
which is solved, e.g., by CoGα for any 0 ≤ α < 1. This section proposes an
algorithm ψ(n,2) with α(ψ(n,2)) = 1 for FC(2)-PO. Unfortunately, proposing an
algorithm for FC(f)-PO for f ≥ 3 is left as a future work.

Algorithm ψ(n,2). We propose an algorithm ψ(n,2) to solve FC(2)-PO. Since the
case n = 3 is easy, we assume n ≥ 4. Algorithm ψ(n,2) calls another algorithm
LN(n,2), which solves FC(2)-PO when an initial con�guration P0 is linear, i.e.,
when CH(P0) is a line segment.

To compare positions p and q, we frequently use a lexicographic order >. It
has however a drawback for our purpose: Suppose that p (resp. q) in Z0 is p(i)

(resp. q(i)) in Zi. Then p
(i) < q(i) and p(j) > q(j) can happen for some i ̸= j.

In ψ(n,2), we introduce an order ≻ that all robots can consistently compute.

Let P = {p1,p2, . . . ,pn} be a multiset of n points, and P = {q1, q2, . . . , qm}
be the set of distinct points in P . The multiplicity of a point q ∈ P is denoted
by µP (q). In the de�nition of ≻P , it is convenient to treat µP (q) points q in P
as a point q with a label µP (q). We thus identify P with a pair (P , µP ), where
µP is a labeling function to associate label µP (q) with each point q ∈ P . Let oP
be the center of the smallest enclosing circle CP of P .



Let GP be the rotation group GP of P about oP preserving µP . The order
|GP | of GP is denoted by kP . Note that kP does not depend on µP (oP ). It is
similar to the symmetricity σ(P ) of P de�ned in [18], but kP ̸= σ(P ) in general.
Let ΓP (q) ⊆ P be the orbit of GP through q ∈ P . Then |ΓP (q)| = kP for all
q ∈ P \{oP }, and µP (q

′) = µP (q) for all q
′ ∈ ΓP (q). If oP ∈ P , ΓP (oP ) = {oP }.

Let ΓP = {ΓP (q) : q ∈ P} be the set of all orbits. Then ΓP is a partition of P .
To de�ne ≻P , we need the concept of view. De�ne an x-y coordinate system

Ξq for any point q ∈ P \ {oP }. The origin of Ξq is q, the unit distance is
the radius of CP , and the x-axis is taken so that it goes through oP in its
positive side. Finally, it is right-handed. Let γq be the coordinate transformation
from Ξq to Z0. Then the view VP (q) of q is de�ned to be γ−1

q (P ). That is,
γq(VP (q)) = P , i.e., P in Z0 is VP (q) in Ξq. By de�nition, VP (q) = VP (q

′) if
and only if q′ ∈ ΓP (q). Let V iewP = {VP (q) : q ∈ P \ {oP }}.

To compare two views in V iewP , we arbitrarily choose and �x a total order ⊐
on the set of multisets of n points. We de�ne a total order ≻P on ΓP as follows:
For any two distinct orbits ΓP (q) and ΓP (q

′) in ΓP , ΓP (q) ≻P ΓP (q
′), if one

of the following conditions hold: (1) µP (q) > µP (q
′), (2) µP (q) = µP (q

′) and
dist(q,oP ) < dist(q′,oP ), or (3) µP (q) = µP (q

′), dist(q,oP ) = dist(q′,oP ),
and VP (q) ⊐ VP (q

′). When oP ∈ P , we assume that ΓP (q) ≻P ΓP (oP ) for all
q ̸= oP . Now ≻P is a total order on ΓP . If kP = 1, since ΓP (q) = {q} for all
q ∈ P , we regard ≻P as a total order on P (by identifying ΓP (q) with q).

We partition the set of all multisets P = {p1,p2, . . . ,pn} for all n ≥ 4 into
six types G, L, T, I, S, and Z. Let mP = |P |.

G(oal): mP ≤ 2.
L(ine): CH(P ) is a line segment.
T(riangle): mP = 3 and CH(P ) is a triangle.
I(nside): mP = 4, CH(P ) is a triangle, and oP ∈ P .
S(ide): mP = 4, CH(P ) is a triangle, and MP ∈ P , where MP is the middle

point of a longest side of CH(P ).
Z: P does not belong to the above �ve types.

We de�ne a target function ψ(n,2).

[Target function ψ(n,2)]

1. When P is type Z:
(a) If kP ≥ 2, ψ(n,2)(P ) = oP .

(b) If kP = 1, ψ(n,2)(P ) = aP , where aP ∈ P is the largest point with
respect to ≻P , which is well-de�ned since kP = 1.

2. If P is type L, invoke LN(n, 2).
3. When P is type T, let P = {a, b, c}.

(a) If triangle abc is equilateral, ψ(n,2)(P ) = oP .
(b) If triangle abc is not equilateral, ψ(n,2)(P ) = MP , where MP is the

middle point of the longest side. If there are two longest sides, MP is
the middle point of the side next to the shortest side counter-clockwise.

4. If P is type I, ψ(n,2)(P ) = oP .



5. If P is type S, ψ(n,2)(P ) =MP (which is de�ned in the de�nition of type S).

Algorithm LN(n,2). We present target function LN(n,2). Let P = {p1,p2, . . . ,
pn} ∈ P be a con�guration of type L, which may be a con�guration that a robot
identi�es in Look phase. We identify a point pi in R

2 with a point in R: Since
(0, 0) ∈ P , we rotate P about (0, 0) counter-clockwise so that the resultant P
becomes the multiset of points in the x-axis. Then we denote (p, 0) by p. In
what follows in this section, a con�guration P is thus regarded as a multiset of
n real numbers, including at least one 0. We assume p1 ≤ p2 ≤ · · · ≤ pn. By
P = {b1, b2, . . . , bmP

}, we denote the set of distinct real numbers in P , wheremP

is the size |P | of P , and b1 < b2 < · · · < bmP
. The length of CH(P ) is denoted

by LP = bmP
− b1 = pn − p1. Let λP = maxp∈P min{p− p1, pmP

− p} ≤ LP /2.
De�ne j∗ by bj∗ = 0. (Thus the current position of a robot ri who identi�es P
in Look phase is bj∗ in Zi.) Since P is type L, kP ≤ 2. We denote the middle
point of x and y by Mxy, i.e., Mxy = (x+ y)/2.

Like ψ(n,2), we consider 10 types, which we de�ne as follows:

G: mP ≤ 2.
B3: mP = 3 and kP = 2.
B4: mP = 4 and kP = 2.
B5: mP = 5 and kP = 2.
B6: mP = 6 and kP = 2.
B: mP ≥ 7 and kP = 2.
U3: mP = 3 and kP = 1.
W: mP = 4, kP = 1, and P = {b1, b2, b3, b4}(b1 < b2 < b3 < b4) satis�es either

(a) 2(b2 − b1) = b3 − b2 and b3 ≤ Mb1b4 , or (b) 2(b4 − b3) = b3 − b2 and
b2 ≥Mb1b4 .

U4: mP = 4, kP = 1, and P is not type W.
U: mP ≥ 5 and kP = 1.

We now give the target function LN(n,2).

[Target function LN(n,2)]

1. If P is type G, LN(n,2)(P ) = 0.
2. When P is type B: If j∗ ≤ ⌈mP /2⌉, LN(n,2)(P ) = b1. Otherwise if j∗ >

⌈mP /2⌉, LN(n,2)(P ) = bmP
.

3. When P is type B3: mP = 3. If j∗ ≤ 2, LN(n,2)(P ) = Mb1b2 . Otherwise if
j∗ = 3, LN(n,2)(P ) =Mb2b3 .

4. When P is type B4: mP = 4. If j∗ ≤ 2, LN(n,2)(P ) = Mb1b2 . Otherwise if
j∗ ≥ 3, LN(n,2)(P ) =Mb3b4 .

5. When P is type B5: mP = 5. If j∗ ≤ 3, LN(n,2)(P ) = b2. Otherwise if j
∗ ≥ 4,

LN(n,2)(P ) = b4.
6. When P is type B6: mP = 6. If j∗ ≤ 3, LN(n,2)(P ) = b2. Otherwise if j

∗ ≥ 4,
LN(n,2)(P ) = b5.

7. When P is type U: Since kP = 1, either b1 ≻P bmP
or bmP

≻P b1 holds.
If b1 ≻P bmP

then LN(n,2)(P ) = b1. Otherwise if bmP
≻P b1, LN(n,2)(P ) =

bmP
.



8. When P is type U3: Since kP = 1 and mP = 3, if b2 =Mb1b3 , then µP (b1) ̸=
µP (b3). If b2 < Mb1b3 or (b2 =Mb1b3)∧(µP (b1) > µP (b3)), then LN(n,2)(P ) =
(2b1 + b2)/3. Otherwise, if b2 > Mb1b3 or (b2 = Mb1b3) ∧ (µP (b1) < µP (b3)),
then LN(n,2)(P ) = (b2 + 2b3)/3.

9. When P is type W: kP = 1, mP = 4, and P satis�es either condition (a) or
(b) (of the de�nition of type W).
(a) If 2(b2 − b1) = b3 − b2 and b3 ≤Mb1b4 , then LN(n,2)(P ) = b2.
(b) If 2(b4 − b3) = b3 − b2 and b2 ≥Mb1b4 , then LN(n,2)(P ) = b3.

10. When P is type U4: kP = 1, mP = 4, and P is not type W. Suppose that
µP (b1) ≥ µP (b4) holds. (The case P satis�es µP (b1) < µP (b4) is symmetric,
and we omit it.)
(a) If µP (b1) ≥ µP (b3), then LN(n,2)(P ) = b1.
(b) If (µP (b1) < µP (b3)) ∧ (µP (b3) ≥ 3), LN(n,2)(P ) = b1, if b3 = 0, and

LN(n,2)(P ) = 0, otherwise if b3 ̸= 0.
(c) Otherwise if (µP (b1) < µP (b3))∧(µP (b3) < 3), µP (b1) = µP (b4) = 1 and

µP (b3) = 2. LN(n,2)(P ) = b1, if (b2 = 0) ∨ (b3 = 0), and LN(n,2)(P ) = 0,
otherwise if (b1 = 0) ∨ (b4 = 0).

We have the following theorem:

Theorem 10. Target function ψ(n,2), which satis�es α(ψ(n,2)) = 1, is an algo-
rithm for FC(2)-PO.

8 Gathering Problem

We �nally investigate the gathering problem, provided that there are no faulty
robots, to emphasize that the gathering and the convergence problems have
completely di�erent properties from the viewpoint of compatibility. Since the
gathering problem is not solvable if n = 2 [18], we assume n ≥ 3 in this section.
Moreover, we assume that the robots initially occupy distinct points. There are
many gathering algorithms. The following algorithm GAT [18] is one of them.

[Target function GAT]
1. If there is a unique p ∈ P such that µP (p) > 1, GAT(P ) = p.
2. Otherwise, if µP (p) = 1 for all p ∈ P :

(a) If kP = 1, GAT(P ) = p, where p is the largest point in P with respect
to ≻P .

(b) If kP > 1, GAT(P ) = oP .

Observe that α(GAT) = 1. We can modify Step 2(a) of GAT to obtain
another algorithm GAT′. For example, GAT′(P ) can be the smallest point p′

in P with respect to ≻P , instead of p. Then indeed GAT′ is also a gathering
algorithm with α(GAT′) = 1, but obviously Φ = {GAT,GAT′} is not compatible
with respect to the gathering problem. Let us summarize.

Theorem 11. [18] Let Φ = {GAT} and Φ′ = {GAT′}. Then Φ and Φ′ are
compatible with respect to the gathering problem, but Φ∪Φ′ is not. Here α(Φ) =
α(Φ′) = α(Φ ∪ Φ′) = 1.



Theorem 12. Any target function ϕ is not a gathering algorithm if α(ϕ) < 1,
or equivalently, any set Φ of target functions such that α(Φ) < 1 is not compatible
with respect to the gathering problem.

9 Conclusions

We introduced the concept of compatibility and investigated the compatibilities
of several convergence problems. A compatible set Φ of target functions with
respect to a problem Π is an extension of an algorithm ϕ for Π, in the sense
that every target function ϕ ∈ Φ is an algorithm for Φ.

The problems we investigated are the convergence problem, the fault tolerant
(n, f)-convergence problem (FC(f)), the fault tolerant (n, f)-convergence prob-
lem to a convex f -gon (FC(f)-CP), and the fault tolerant (n, f)-convergence
problem to f points (FC(f)-PO), for crash faults. The gathering problem was
also investigated. The results are summarized in Table 1. Main observations we
would like to emphasize are:

1. The convergence, FC(1), FC(1)-PO, and FC(f)-CP share the same property:
Every set Φ of target functions is compatible, if 0 ≤ α(Φ) < 1.

2. The gathering problem and FC(f)-PO for f ≥ 2 share the same property:
Any set Φ of target functions is not compatible, if 0 ≤ α(Φ) < 1.

3. FC(f) (f ≥ 2) is in between FC(f)-CP and FC(f)-PO.

Before closing the paper, we list some open problems:

1. Extend Table 1 to contain the results for α(Φ) > 1.
2. Suppose that ϕ and ϕ′ are algorithms for the convergence problem. Find a

necessary and/or a su�cient condition for Φ = {ϕ, ϕ′} to be compatible with
respect to the convergence problem.

3. Investigate the compatibility of FC(f)-PO for f ≥ 2 under the FSYNC
model.

4. Investigate the compatibility of convergence problems under the ASYNC
model.

5. Investigate the compatibility of convergence problems in the presence of
Byzantine failures.

6. Investigate the compatibility of fault tolerant gathering problems.
7. Find interesting problems with a large compatible set.
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