
Independent Set under a Change
Constraint from an Initial Solution

Yuichi Asahiro1, Hiroshi Eto2,∗, Kana Korenaga2,†, Guohui Lin3,
Eiji Miyano2,‡, and Reo Nonoue2,§

1 Kyushu Sangyo University, Fukuoka, Japan
asahiro@is.kyusan-u.ac.jp

2 Kyushu Institute of Technology, Iizuka, Japan
{∗eto, ‡miyano}@ai.kyutech.ac.jp,

{†korenaga.kana518, §nonoue.reo265}@mail.kyutech.jp
3 University of Alberta, Edmonton, Canada

guohui@ualberta.ca

Abstract. In this paper, we study a type of incremental optimization
variant of the Maximum Independent Set problem (MaxIS), called
Bounded-Deletion Maximum Independent Set problem (BD-MaxIS):
Given an unweighted graph G = (V,E), an initial feasible solution (i.e.,
an independent set) S0 ⊆ V , and a non-negative integer k, the objective
of BD-MaxIS is to find an independent set S ⊆ V such that |S0 \ S| ≤ k
and |S| is maximized. The original MaxIS is generally NP-hard, but, it
can be solved in polynomial time for perfect graphs (and therefore, com-
parability, co-comparability, bipartite, chordal, and interval graphs). In
this paper, we show that BD-MaxIS is NP-hard even if the input is re-
stricted to bipartite graphs, and hence to comparability graphs. On the
other hand, fortunately, BD-MaxIS on co-comparability, interval, con-
vex bipartite, and chordal graphs can be solved in polynomial time. Fi-
nally, we study the computational complexity on very similar variants of
the Minimum Vertex Cover and the Maximum Clique problems for
graph subclasses.

1 Introduction

Background. Motivated by the practice-oriented research on the railroad
blocking problem, the following general framework of incremental optimization
problems with initial solutions was introduced [20]: Let P be an optimization
problem with a starting feasible solution S0, and let F be the set of all feasible
solutions for P . For a new feasible solution S ∈ F , the increment from S0 to S
is the amount of change given by a function f(S, S0) : F × F → R, which we
refer to as the increment function. Suppose that k is a given bound on the total
amount of change permitted. We call S an incremental solution if it satisfies
the inequality f(S, S0) ≤ k. The goal is to find an incremental solution S∗ that
results in the maximum improvement in the objective function value.

Fig. 1. Given a graph G, an initial solution {v1, v4, v5}, and k = 2 as input (left), an
optimal solution is {v1, v6, v7, v8}.

In this paper we study a type of incremental optimization of the Maximum
Independent Set problem (MaxIS for short). The original MaxIS is one of
the most important and most investigated combinatorial optimization problems
in theoretical computer science. The input of MaxIS is an unweighted graph
G = (V,E), where V and E are the sets of vertices and edges in G, respectively.
An independent set of G is a subset S ⊆ V of vertices such that for every
pair u, v ∈ S, the edge {u, v} is not in E. The goal of MaxIS is to find an
independent set of maximum cardinality. The problem MaxIS is a well-studied
algorithmic problem, and actually it is one of the Karp’s 21 fundamental NP-hard
problems [14]. Furthermore, it is well known that MaxIS remains NP-hard even
for substantial restricted graph classes such as cubic planar graphs [6], triangle-
free graphs [19], and graphs with large girth [17]. Fortunately, however, it is also
known that the problem can be solved in polynomial time if the input graph
is restricted to, for example, graphs with constant treewidth [5] (and therefore,
outerplanar, series-parallel, cactus graphs, and so on), perfect graphs [12] (and
therefore, chordal [7], comparability [10], co-comparability, bipartite graphs, and
so on), circular-arc graphs [8], and many other graph classes.

Our problem and contributions. Throughout this paper, we let S0 and S
denote an initial solution (i.e., an initial independent set) and a solution obtained
by our algorithm. We define the increment function as f(S, S0) = |S0 \ S|, the
number of vertices in S0 but not in S, which is the number of deleted vertices
from the initial solution S0. The obtained solution S must satisfy the inequality
|S0 \ S| ≤ k. That is, the number of vertices deleted from the initial solution
S0 is bounded by the given bound k. The function f can be seen as a “change-
constraint” function. Now, we can define our problem as follows:

Bounded-Deletion Maximum Independent Set (BD-MaxIS)

Input: An unweighted graph G = (V,E), an initial feasible solution
(i.e., an independent set) S0 ⊆ V , and a non-negative integer k.

Goal: The goal is to find an independent set S ⊆ V such that |S0 \S| ≤
k and |S| is maximized.

See Figure 1 for an example. If a graph G of eight vertices, an initial solution
{v1, v4, v5}, and k = 2 are given as input, then {v1, v6, v7, v8} is an optimal
solution, which is obtained by deleting two vertices {v4, v5} and adding three
vertices {v6, v7, v8}. If k = 1, then the initial solution {v1, v4, v5} is optimal

perfect

comparability

bipartite

co-comparability

co-bipartitetrapezoid

permutation
interval

chordal

convex bipartite

NP-hard

P

bipartite permutation

Fig. 2. Computational complexity of BD-MaxIS on graph classes. For example, “perfect
→ comparability” means that the perfect graph class is a superclass of the compara-
bility graph class.

since one vertex-deletion does not make it possible to insert two or more new
independent vertices.

One sees that BD-MaxIS is generally NP-hard since if k ≥ |S0|, then we
can completely change the solution, and thus BD-MaxIS includes the classical
MaxIS as a special case (or simply, MaxIS is the case where S0 is empty and
k = 0). Hence, our work focuses on the computational complexity of BD-MaxIS
on polynomial-time solvable graph classes such as perfect, comparability, co-
comparability, bipartite, chordal graphs, and so on.

Our main results are summarized in the following list and Figure 2:

(1) BD-MaxIS is NP-hard even if the input is restricted to bipartite graphs. Since
every bipartite graph is comparability and perfect, BD-MaxIS on compara-
bility graphs, or perfect graphs is also NP-hard.

(2) BD-MaxIS can be solved in O(k|V |2) time for co-comparability graphs. If
the input graph is an interval graph, then there is an O(k|V | + |E|)-time
algorithm for BD-MaxIS.

(3) BD-MaxIS can be solved in O(k|E|) time for convex bipartite graphs.
(4) BD-MaxIS can be solved in O(k2(|V |+ |E|)2) time for chordal graphs.

Other well-known graph classes including trapezoid, co-bipartite, permutation,
and bipartite permutation are also polynomial-time solvable from the results (2),
(3), and (4).

2 Preliminaries

Notation. Let G = (V,E) be a simple (without multiple edge or self-loop
edge), unweighted, and undirected graph, where V and E are sets of vertices
and edges, respectively. We sometimes denote by V (G) and E(G) the vertex
and the edge sets of G, respectively. Unless otherwise described, n and m denote

the cardinality of V and the cardinality of E, respectively, for G = (V,E). An
edge between vertices u and v is denoted by {u, v}, and in this case vertices u
and v are said to be adjacent. The graph G denotes the complement graph of G,
i.e., G = (V,E), where {u, v} ∈ E if and only if {u, v} ̸∈ E. Let S ⊆ V be a set
of vertices of G. Then, the cardinality of S is denoted by |S| and the subgraph
of G induced by S is denoted by G[S]. The set N(u) = {v ∈ V | {u, v} ∈ E} is
called the neighborhood of the vertex u ∈ V in G.

Graph subclasses. A k-coloring of the vertices of a graph G = (V,E) is a
mapping col : V → {1, . . . , k} such that col(u) ̸= col(v) whenever {u, v} is an
edge in G. The chromatic number of G, denoted by χ(G), is the least number
k such that G admits a k-coloring. A clique in a graph G is a subset S ⊆ V of
vertices such that every two vertices in S are adjacent. The clique number of
G, denoted by ω(G), is the number of vertices in a maximum clique of G. An
independent set in a graph is a set of vertices no two of which are adjacent. The
independence number of G, denoted by α(G), is the size of a largest independent
set in G.

A graph G is called perfect if χ(H) = ω(H) for every induced subgraph H
of G. A graph is called chordal if every cycle of length at least four contains a
chord, which is an edge that is not part of the cycle but connects two vertices
of the cycle. A graph G is called bipartite if its chromatic number is at most
two. Consider a bipartite graph G with the vertex set V ∪W and its 2-coloring
col, where V and W are the disjoint sets of vertices such that col(V) = 1 and
col(W) = 2. The bipartite graph G is convex if the vertices in W can be ordered
in such a way that, for each v ∈ V , the neighborhood N(v) of v are consecutive
in W . The ordering of the vertices in W is said to be convex, and G is said to
be convex with respect to W . A graph G is called co-bipartite if its complement
graph G is bipartite. A graph is called comparability if there exists a partial order
<σ on its vertices such that two vertices u and v are adjacent in the graph if and
only if u <σ v or v <σ u. A graph G is called co-comparability if its complement
graph G is a comparability graph. A graph is called permutation if it can be
represented by a permutation π : {1, . . . , n} → {1, . . . , n} in such a way that two
vertices i < j are adjacent if and only if π(i) > π(j). A graph is called bipartite
permutation if it is both bipartite and permutation.

3 NP-hardness of BD-MaxIS on bipartite graphs

Given an unweighted graph G, the goal of the Maximum Clique problem
(MaxClique) is to find a clique Q ⊆ V of maximum cardinality [14]. Let q-Clique
be the decision version of MaxClique, i.e., given a graph G and an integer q,
q-Clique is to determine if there is a clique of size q in G:

Theorem 1. BD-MaxIS is NP-hard even if the input is restricted to bipartite
graphs.

Proof. We show that the NP-complete problem q-Clique is polynomial-time re-
ducible to BD-MaxIS on bipartite graphs. Suppose that the input of q-Clique is

G0 = (V 0, E0), where V 0 = {v01 , . . . , v0n} of n vertices and E0 = {e01, . . . , e0m} of
m edges. Then, we construct the following bipartite graph G = (Vv ∪ Ve, E) of
BD-MaxIS by subdividing every edge in E0 to two edges:

Vv = {v1, v2, . . . , vn},
Ve = {e1, e2, . . . , em}, and
E = {{vi, es}, {vj , es} | e0s = {v0i , v0j } ∈ E0}.

That is, the constructed graph G is so-called an incidence graph of G0, and thus
G must be bipartite. Then, we set an initial solution S0 = Vv and an integer
k = q. This completes the reduction. One sees that each edge in E connects
a vertex in Vv with a vertex in Ve. Therefore, S

0 = Vv must be a (feasible)
independent set. The reduction can be clearly executed in polynomial time.

For the above construction of G, we show that G contains an independent
set S such that |S0 \ S| ≤ k and |S| ≥ |V | − k + k(k − 1)/2 if and only if G0

contains a clique Q0 such that |Q0| ≥ q.
(1) Suppose that G0 contains a clique Q0 of size q, and Q0 = {v01 , . . . , v0q},

without loss of generality. Then, let R = {v1, . . . , vq} be the subset of the cor-
responding q vertices in the initial independent set Vv. Since there must be an
edge between every pair of v0i and v0j in Q0 of G0, we can find a set, say, A, of
q(q − 1)/2 isolated vertices in Ve by deleting all the vertices in R correspond-
ing to Q0. Let S = (S0 \ R) ∪ A. One can see that (i) S0 \ S = R, and thus
|S0 \ S| = q = k, and (ii) S \ S0 = A and |S \ S0| = q(q − 1)/2 = k(k − 1)/2.
Namely, |S| = |V | − k + k(k − 1)/2.

(2) Suppose that the size of a maximum clique in G0 is at most q − 1. Let
R = {v1, . . . , vq} be an arbitrary subset of q vertices in the initial independent
set Vv. Then, we consider the corresponding set R0 = {v01 , . . . , v0q} of q vertices
in G0 of q-Clique and the subgraph G[R0] induced by R0 in G0. Since the size of
the maximum clique in G is at most q−1, G[R0] contains at most q(q−1)/2−1
edges. It follows that we can only obtain the new independent set of at most
q(q− 1)/2− 1 = k(k− 1)/2− 1 vertices by deleting any subset of q = k vertices
from Vv, i.e., the size of any independent set is at most |V | − k+ k(k− 1)/2− 1.
This completes the proof. ⊓⊔

Since comparability graphs and perfect graphs are superclasses of bipartite
graphs [11], we obtain the following corollary:

Corollary 1. BD-MaxIS is NP-hard even if the input is restricted to compara-
bility graphs, or perfect graphs.

4 Polynomial-time solvable graph subclasses of BD-MaxIS

4.1 Co-comparability graphs

In this section, for BD-MaxIS on co-comparability graphs, we design a polynomial-
time algorithm, while BD-MaxIS on perfect graphs is NP-hard as shown in the

Fig. 3. Umbrella-free vertex ordering. For example, consider three vertices v3, v7, and
v8. Since there is an edge between v3 and v8, there is an edge {v7, v8}.

previous section. Before the detailed description of our algorithm ALG CoC, we
give the vertex ordering characterization of co-comparability graphs.

Vertex ordering characterization. A vertex ordering of G = (V,E) is a
bijection σ : V ↔ {1, 2, . . . , n}, i.e., for v ∈ V , σ(v) denotes the unique position
of v in σ, σ(u) ̸= σ(v) for u ̸= v. For two vertices u and v, we write that u <σ v
if and only if σ(u) < σ(v). For two vertices u, v ∈ V , we say that u is left (resp.,
right) to v in σ if u <σ v (resp., v <σ u). A vertex ordering characterization is
an ordering on the vertices of a graph that satisfies certain properties. If every
G ∈ G has a total ordering of its vertices that satisfies some property, then we
say that the graph class G has a vertex ordering characterization on the property,
which is often used to design polynomial-time algorithms. The co-comparability
graph has the following vertex ordering characterization:

Proposition 1 ([15]). A graph G = (V,E) is a co-comparability graph if and
only if there exists a vertex ordering σ of its vertices such that for every triple of
vertices u, v, and w such that if u <σ v <σ w and {u,w} ∈ E, then {u, v} ∈ E
or {v, w} ∈ E (or both).

The vertex ordering σ that satisfies the above proposition is called an umbrella-
free ordering since σ does not contain an umbrella, which is a triple of vertices
u <σ u <σ w with {u,w} ∈ E but {u, v}, {v, w} ̸∈ E. For example, see Fig-
ure 3. McConnell and Spinrad presented an algorithm to compute such a vertex
ordering in O(n+m) time [16].

Algorithm. Our algorithm ALG CoC for BD-MaxIS on co-comparability graphs is
based on a dynamic programming along the vertex ordering of co-comparability
graphs. Given a co-comparability graphG = (V,E), we first compute an umbrella-
free vertex ordering σ of V in O(n + m) time. Suppose that the ordering σ is
v1 <σ v2 <σ · · · <σ vn. In order to make the description of our algorithm easier,
we add an isolated dummy vertex v0 so that v0 <σ v1 into the leftmost position
(i.e., the 0th position). Let Vi..j = {vi, vi+1, . . . , vj} be the set of the j − 1 + 1
consecutive vertices, vi through vj . Also, let NL(vi) = N(vi) ∩ V0..(i−1) = {vj ∈
V0..(i−1) | {vi, vj} ∈ E} is called the left neighborhood of vi. Let δi be the
subscript of the leftmost vertex in NL(vi). If NL(vi) = ∅, then δi = i. Let
NL(vi) = {vj ∈ Vδi..(i−1) | {vj , vi} ̸∈ E}. See Figure 3 again. For example,

NL(v11) = {v3, v7, v8, v9, v10}, NL(v11) = {v4, v5, v6}, and δ11 = 3.
Now, consider the following two values pick and j: The former value pick ∈

{0, 1} indicates whether vi is picked into a (partial) solution S or not. The latter

value j ∈ {0, 1, . . . , k} indicates the number of deleted vertices from the initial
solution S0 in order to construct S. For the ith vertex vi, we define IS(i, pick, j)
to be the value of a maximum independent set in the induced subgraph G[V1..i]
satisfying the following: (i) If pick = 1, then a partial solution S for G[V1..i]
includes the ith vertex vi; otherwise, S does not include vi. (ii) The number
|(V1..i ∩ S0) \ S| of deleted vertices so far is exactly j.

Let #S(i1, i2) be the number of vertices in S0 ∩ Vi1..i2 , i.e., the number of
vertices in {vi1 , . . . , vi2} which are picked into the initial solution S0. Initially
we set IS(0, pick, j) = 0 for pick = 0, 1, and j = 0, 1, . . . k. The recursive for-
mula of our DP-based algorithm ALG CoC is divided into the following two cases,
(Case 1) vi is not in the initial solution S0, i.e, vi ̸∈ S0, and (Case 2) vi is in S0,
i.e., vi ∈ S0.

(Case 1) Suppose that vi ̸∈ S0. The recursive formula is defined as follows:

IS(i, pick, j) =



max {IS(i− 1, 0, j), IS(i− 1, 1, j)}
if pick = 0;

1 + max
{

max
vℓ∈NL(vi)

{
IS(ℓ, 1, j −#S(ℓ+ 1, i− 1))

}
,

IS(δi, 0, j −#S(δi + 1, i− 1))
}

if pick = 1 and δi ̸= i;

1 + max {IS(i− 1, 0, j), IS(i− 1, 1, j)}
if pick = 1 and δi = i.

(1) Consider the case where vi is not picked into the solution S. Then, the
number |(V1..i ∩ S0) \ S| of deleted vertices at vi is equal to the number
|(V1..(i−1) ∩ S0) \ S| at vi−1. Furthermore, one sees that the value of the
maximum independent set in the induced subgraph G[V1..i] is equal to the
value of a maximum independent set in the induced subgraph G[V1..(i−1)].
(2) Suppose that vi is picked into the solution S. Then, the value of the
maximum independent set in G[V1..i] increases by one. One sees that all
the left neighborhood of vi cannot be picked into S, but vℓ ∈ NL(vi) can be
possibly picked into S since vℓ is not adjacent to vi. (i) If all the vertices vℓ ∈
NL(vi) are not picked into S, then IS(i, 1, j) (now pick = 1) is equal to the
value of a maximum independent set in the induced subgraph G[V1..δi] which
is stored into IS(δi, 0, j−#S(δi, i−1)) since all the vertices of S∩Vδi,i−1 must
not be included in the solution S. (ii) For ease of exposition, take a look at
five vertices v3, v4, v5, v6, and v11 in Figure 3. If v11 is in S, then v3 is not in
S. Suppose that v4 and v6 inNL(v11) is picked into S and v5 is not in S. Since
v5 is not in S, IS(5, 0, j) can be obtained from max{IS(4, 0, j), IS(4, 1, j)} if
v5 is in the initial solution S0, and from max{IS(4, 0, j − 1), IS(4, 1, j − 1)}
if v5 is not in S0. That is, if v5 is not in S, then the current information of
v5 can be obtained from the information of the left vertex v4. Therefore, it is
enough to verify the information of vℓ ∈ NL(vi) only when vℓ is picked into

S. This is the main reason why our DP-based algorithm works in polynomial
time if the vertex ordering characterization is umbrella-free.
(3) Suppose that vi is picked into the solution S, and NL(vi) = ∅. Then,
IS(i, pick, j) can be computed from the two values IS(i−1, 0, j) and IS(i−
1, 1, j) of the left vertex vi−1.

(Case 2) Suppose that vi ∈ S0. One sees that “vi is not picked” means that vi
must be deleted from the initial solution S0. The recursive formula is almost
the same as the formula in (Case 1), but, the number of deleted vertices is
different if vi is not picked into the solution S:

IS(i, pick, j) =



max {IS(i− 1, 0, j − 1), IS(i− 1, 1, j − 1)}
if pick = 0;

1 + max
{

max
vℓ∈NL(vi)

{
IS(ℓ, 1, j −#S(ℓ+ 1, i− 1))

}
,

IS(δi, 0, j −#S(δi + 1, i− 1))
}

if pick = 1 and δi ̸= i;

1 + max {IS(i− 1, 0, j), IS(i− 1, 1, j)}
if pick = 1 and δi = i.

Our algorithm ALG CoC computes the value of IS(i, pick, j) and stores it into
a three-dimensional table IS of size (n+1)× 2× (k+1) = O(kn). Then, finally,
ALG CoC returns max0≤j≤k {IS(n, 0, j), IS(n, 1, j)}.

Theorem 2. Given an n-vertex co-comparability graph G and a non-negative
integer k, BD-MaxIS can be solved in O(kn2) time.

Proof. Given the co-comparability graph G, we can obtain its umbrella-free or-
dering in O(n2) time by using the method proposed in [16]. Clearly, each table
entry takes O(n) time to compute. Since the table size is O(kn), the running
time of ALG CoC is O(kn2). ⊓⊔

4.2 Interval graphs

Since every interval graph is co-comparability, BD-MaxIS on interval graphs can
be solved in O(kn2) time by ALG CoC. Fortunately, however, we can provide
a faster algorithm ALG Int if the following vertex ordering characterization of
interval graphs, known as an interval ordering, is given:

Proposition 2 ([18]). A graph G = (V,E) is an interval graph if and only if
there exists an ordering σ of its vertices such that for every triple of vertices u,
v, and w such that if u <σ v <σ w and {u,w} ∈ E, then {u, v} ∈ E.

Theorem 3. Suppose that we are given the interval ordering of an n-vertex
interval graph G and a non-negative integer k as input. Then, BD-MaxIS can be
solved in O(kn) time. (The proof will appear in the full version of this paper.)

Since the interval ordering of interval graphs with n vertices and m edges
can be obtained in O(n+m) [3], we obtain the following corollary:

Corollary 2. Given an interval graph with n vertices and m edges, and a non-
negative integer k, BD-MaxIS can be solved in O(kn+m) time.

4.3 Convex bipartite graphs

As shown in Section 3, BD-MaxIS on bipartite graphs is NP-hard. One of the
famous subclasses of bipartite graphs is the convex bipartite graph class. In this
section we show that BD-MaxIS on convex bipartite graphs can be solved in
polynomial-time. Here, we give our notation and additional terminology.

Let G = (V,W,E) be a convex bipartite graph with respect to W . Sup-
pose that V and W have n1 and n2 vertices, V = {v1, v2, . . . , vn1

} and W =
{w1, w2, . . . , wn2

}, where the convex vertex ordering σ is w1 <σ w2 <σ · · · <σ

wn2 . The vertex ordering of vertices in V is given later. See Figure 4. For example,
the neighborhood N(v3) = {w3, w4, w5, w6, w7} of v3 contains five consecutive
vertices. Let wℓ

i and wr
i be the leftmost and the rightmost vertices in N(vi) of vi,

respectively. Assume that n1 vertices in V = {v1, . . . , vn1
} are sorted such that

wr
1 <σ · · · <σ wr

n1
holds by the vertex ordering σ, with ties broken arbitrarily.

The ordering can be computed in O(n1 log n1). For the convex bipartite graph
in Figure 4, wr

1 = wr
2 = w5, w

r
3 = w7, w

r
4 = w9, and wr

5 = w10. As for the ith
vertex vi, e

ℓ
v(i) = {vi, wℓ

i} and erv(i) = {vi, wr
i } are called the leftmost and the

rightmost edges of vi, respectively. The other edges are called middle edges of vi.
If vi is incident to one edge only, then the edge is also regarded as the rightmost
edge. Now we define a mapping rightv : E → {0, 1} such that if an edge e is the
rightmost edge, then rightv(e) = 1; otherwise, rightv(e) = 0. Similarly, let vℓi
and vri be the leftmost and the rightmost vertices in N(wi) of wi, respectively.
As for the ith vertex wi, e

ℓ
w(i) = {vℓi , wi} and erw(i) = {vri , wi} are called the

leftmost and the rightmost edges of wi, respectively. The other edges are called
middle edges of wi. If wi is incident to one edge only, then the edge is regarded
as the leftmost edge. Again, we define a mapping leftw : E → {0, 1} such that if
an edge e is the leftmost edge, then leftw(e) = 1; otherwise, leftw(e) = 0. Take
a look at w5 in Figure 4. One sees that the neighborhood N(w5) of w5 is v1, v2,
v3, and v4. Then, for example, rightv({v1, w5}) = 1 and rightv({v2, w5}) = 1,
but, rightv({v3, w5}) = 0. Also, leftw({v1, w5}) = 1.

Algorithm. Our algorithm ALG CB for BD-MaxIS on convex bipartite graphs
with respect to W follows the convex ordering of W , roughly from the leftmost
edge to the rightmost edge. More precisely, ALG CB uses the edge ordering σe

such that {w1, v11} <σe {w1, v12} <σe . . . <σe {w1, v1|N(w1)|} <σe {w2, v21}
<σe

. . . <σe
{w2, v2|N(w2)|} <σe

· · · <σe
{wn2

, vn2|N(wn2)|}, where N(wi) =

{vi1 , . . . , vi|N(wi)|
} and vi1 <σ · · · <σ vi|N(wi)|

for 1 ≤ i ≤ n2. That is, the
leftmost |N(w1)| edges of the edge ordering are incident to w1, the next |N(w2)|
edges are incident to w2, and so on.

Let [picki, pickiq] ∈ {[0, 0], [0, 1], [1, 0]} be a status of the edge {wi, viq} such
that if picki = 1 (resp., picki = 0), then wi is picked (resp, not picked) into

Fig. 4. Convex bipartite

the solution S and if pickiq = 1 (resp., pickiq = 0), then viq is picked (resp,
not picked) into the solution S for 1 ≤ i ≤ n2 and 1 ≤ q ≤ |N(wi)|. For the
ith vertex wi, we define IS([i, iq], [picki, pickiq], j) to be the value of a maximum
independent set in the induced subgraphG[{w1, . . . , wi}∪N(w1)∪· · ·∪N(wi−1)∪
{vi1 , . . . , viq}] satisfying that the number of deleted vertices is exactly j, where
[picki, pickiq] is [0, 0], [0, 1], or [1, 0].

In order to make the description of our algorithm easier, we add two dummy
vertices v0 and w0 into the leftmost positions in V and W , respectively. Initially
we set IS([0, 0], [0, 0], j) = IS([0, 0], [0, 1], j) = IS([0, 0], [1, 0], j) = 0 for j =
0, 1, . . . , k.

Consider a vertex vi and its neighbor vertices in N(vi). If vi is in S, then
any vertex in N(vi) cannot be picked into S. Conversely, if at least one vertex
in N(vi) is in S, then vi cannot be picked into S. See Figure 4 again. Consider
six vertices W1..6 = {w1, w2, w3, w4, w5, w6} and their four neighbor vertices
V1..4 = {v1, v2, v3, v4}, and also 13 edges between W1..6 and V1..4. If every vertex
in W1..6 is fixed to be picked or not into S, then the status v1 ∈ S or v1 ̸∈ S,
and v2 ∈ S or v2 ̸∈ S can be fixed since {v1, w5} and {v2, w5} are the rightmost
edges and w5 <σ w6. On the other hand, for example, the status v3 ∈ S or
v3 ̸∈ S cannot be fixed since it depends on whether w7 is picked or not into S.
Therefore, roughly speaking, as for vertices in W , (i) if wi is picked into S, then
the size of S increases by one; on the other hand, as for vertices in V , (ii) if
any neighbor vertex in N(vi) \ {wr

i } are not picked into S, then the size of S is
incremented when wr

i ∈ S is determined.

The recursive formula of our DP-based algorithm ALG CB is divided into the
following three cases, (Case 1) wi, viq ̸∈ S0, (Case 2) wi ̸∈ S0 but viq ∈ S0, and
(Case 3) wi ∈ S0 but viq ̸∈ S0. Furthermore, each of the three cases (Case 1),
(Case 2), and (Case 3) has four sub-cases (rightv({wi, viq}), leftw({wi, viq})) =
(0, 0), (0, 1), (1, 0), and (1, 1). Note that if an edge {i, iq} ̸∈ E, then we set
IS([i, iq], [picki, pickiq], j) = 0 in the right-hand side of the recursive formula.
Here we show only (Case 1) since (Case 2) and (Case 3) are very similar to
(Case 1); (Case 2) and (Case 3) will appear in the full version of this paper.

(Case 1) wi, viq ̸∈ S0.

(i) Suppose that rightv({wi, viq}) = 0 and leftw({wi, viq}) = 0.

IS([i, iq], [picki, pickiq], j)

=



max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),

IS([i− 1, iq], [0, 0], j), IS([i− 1, iq], [1, 0], j)}
if picki = 0 and pickiq = 0

max {IS([i, iq−1], [1, 0], j), IS([i− 1, iq], [0, 0], j),

IS([i− 1, iq], [1, 0], j)}
if picki = 1 and pickiq = 0

max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),

IS([i− 1, iq], [0, 1], j)}
if picki = 0 and pickiq = 1

(ii) Suppose that rightv({wi, viq}) = 1 and leftw({wi, viq}) = 0.

IS([i, iq], [picki, pickiq], j)

=



max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),

IS([i− 1, iq], [0, 0], j), IS([i− 1, iq], [1, 0], j)}
if picki = 0 and pickiq = 0

max {IS([i, iq−1], [1, 0], j), IS([i− 1, iq], [0, 0], j),

IS([i− 1, iq], [1, 0], j)}
if picki = 1 and pickiq = 0

1 +max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),

IS([i− 1, iq], [0, 1], j)}
if picki = 0 and pickiq = 1

(iii) Suppose that rightv({wi, viq}) = 0 and leftw({wi, viq}) = 1.

IS([i, iq], [picki, pickiq], j)

=



max {IS([i− 1, iq], [0, 0], j), IS([i− 1, iq], [1, 0], j)}
if picki = 0 and pickiq = 0

1 +max {IS([i− 1, iq], [0, 0], j), IS([i− 1, iq], [1, 0], j)}
if picki = 1 and pickiq = 0

IS([i− 1, iq], [0, 1], j)

if picki = 0 and pickiq = 1

(iv) Suppose that rightv({wi, viq}) = 1 and leftw({wi, viq}) = 1.

IS([i, iq], [picki, pickiq], j)

=



max {IS([i− 1, iq], [0, 0], j), IS([i− 1, iq], [1, 0], j)}
if picki = 0 and pickiq = 0

1 +max {IS([i− 1, iq], [0, 0], j), IS([i− 1, iq], [1, 0], j)}
if picki = 1 and pickiq = 0

1 + IS([i− 1, iq], [0, 1], j)

if picki = 0 and pickiq = 1

Theorem 4. Given an m-edge convex bipartite graph G and a non-negative
integer k, BD-MaxIS can be solved in O(km) time.

Proof. Our algorithm ALG CB computes the value of IS([i, iq], [picki, pickiq], j)
and stores it into a two-dimensional table IS of size (m+1)×3×(k+1) = O(km).
Then, finally, ALG CB returns

max
0≤j≤k

{
IS([n2, n1], [0, 0], j), IS([n2, n1], [0, 1], j), IS([n2, n1], [1, 0], j)

}
.

Since each table entry takes O(1) time to compute, the running time of ALG CB

is O(km). ⊓⊔

4.4 Chordal graphs

The class of chordal graphs is one of the important subclasses of perfect graphs.
Indeed, chordal graphs have attracted interest in graph theory since several
combinatorial optimization problems that are intractable turn to be tractable
on chordal graphs. In this section we provide a polynomial-time algorithm for
BD-MaxIS on chordal graphs, which is again based on a dynamic programming
for the clique tree representation of chordal graphs.

Clique tree. Let QG be the set of all maximal cliques in a graph G, and let
Qv ⊆ QG be the set of all maximal cliques that contain a vertex v ∈ V (G). It is
known [4, 9] that G is chordal if and only if there exists a tree T = (QG, E(T))
such that each node1 of T corresponds to a maximal clique in QG and T has
the induced subtree property, i.e., the subtree T [Qv] induced by Qv is connected
for every vertex v ∈ V (G). Such a tree is called a clique tree of G, and it can be
constructed in linear time [1]. Given a chordal graph G = (V,E), we construct a
clique tree T and then a rooted clique tree T (Qr) of G by selecting an arbitrary
node in T as a root Qr. For the rooted clique tree T (Qr) of G and a node Qi in
T (Qr), T (Qi) represents the subtree rooted at Qi. See Figure 5, where the left
is a chordal graph G of 11 vertices, and the right is its rooted clique tree T (Qr).

1 We will refer to a node in a tree in order to distinguish it from a vertex in a graph.

Fig. 5. (Left) Chordal graph G, and (Right) its rooted clique tree Tr with a root
G[{v1, v2, v3, v4, v5}]

Let V (Qi) and V (T (Qi)) be the set of vertices in the node Qi and the union of
vertices in all nodes of the subtree T (Qi) rooted at Qi, respectively.

In this paper, we consider a weak clique tree representation of a chordal
graph [13]. Each node of the original clique tree must be a maximal clique,
but each node of the weak clique tree is just a clique. It is known [13] that
every chordal graph G = (V,E) has a weak clique tree T such that T is a
binary tree with O(n) nodes and the sum of all cardinalities of its nodes is
O(n + m). Furthermore, every weak clique tree of a chordal graph is still a
tree decomposition, i.e., satisfies the induced subtree property. Therefore, the
dynamic programming using the weak clique tree works well.

Algorithm. Given a chordal graph G = (V,E), we first compute a rooted weak
clique tree T (Qr) of G in O(n+m) time. For the sake of notational convenience,
let T = T (Qr), Ti = T (Qi), and let VT = {Q1, Q2, . . . , Q|VT |} be the set of
nodes in T . Suppose that Qiℓ and Qir in VT respectively are the left and the
right children of Qi, if exist. Recall that V (Ti) (= V (T (Qi))) is the union of
vertices in all nodes in the subtree Ti rooted at Qi, and V (T) = V (G).

Let STi be an independent set in the subtree induced by V (Ti), i.e., STr is
an independent set S of G. For a node Qi in T , Si ⊆ V (Qi), and ji ∈ {0, . . . , k},
we define IS(i, Si, ji) to be the maximum size of the independent set STi

in Ti

satisfying that STi
∩ V (Qi) = Si and the number |S0 \ STi

| of deleted vertices
from Ti is exactly ji. A high level description of the recursive formula used by
our algorithm ALG Cho is very similar to the formula given in [2], although we
have to count the number of deleted vertices |S0 \ STi |: The algorithm ALG Cho

computes the values of IS(i, Si, ji) for all nodes Qi in T . This can be done in a
typical bottom-up manner in the weak clique tree. Then, finally, ALG Cho returns
a maximum independent set satisfying the deletion constraint at the root node
Qr. Each table value IS(i, Si, ji) is computed after the table values of the two
children are obtained. Note that each node Qi in T is a clique, and thus we can
pick at most one vertex from Qi. It follows that for every node Qi, the number
of possible choices as Si is at most |V (Qi)|+1 including Si = ∅. Further details
are omitted here, but, we can obtain the following theorem:

Theorem 5. Given an n-vertex chordal graph G and a non-negative integer k,
BD-MaxIS can be solved in O(k2(n+m)2) time.

5 Concluding remarks

The Minimum Vertex Cover problem is also known as one of the Karp’s 21
fundamental NP-hard problems [14]. We can similarly define a bounded-deletion
variant of the Minimum Vertex Cover problem:

Bounded-Deletion Minimum Vertex Cover (BD-MinVS)

Input: An unweighted graph G = (V,E), an initial feasible solution
(i.e., a vertex cover) S0 ⊆ V , and a non-negative integer k.

Goal: The goal is to find a vertex cover S ⊆ V such that |S0 \ S| ≤ k
and |S| is minimized.

Although details are omitted here, we can show the following results by a similar
polynomial-time reduction in the proof of Theorem 1:

Corollary 3. BD-MinVS is NP-hard even if the input is restricted to bipartite
graphs, comparability graphs, or perfect graphs.

Similarly, we can consider a deletion-bounded variant of the classical and
famous NP-hard MaxClique [14]:

Bounded-Deletion Maximum Clique (BD-MaxClique)

Input: An unweighted graph G = (V,E), an initial feasible solution
(i.e., a clique) S0 ⊆ V , and a non-negative integer k.

Goal: The goal is to find a clique set S ⊆ V such that |S0 \ S| ≤ k and
|S| is maximized.

Every independent set S in the complement graph G of a graph G forms a clique
induced by S in G. Therefore, we can show the following:

Corollary 4. BD-MaxClique is NP-hard even if the input is restricted to co-
bipartite graphs, co-comparability graphs, or perfect graphs.

Future work is to show the tractability/intractability of BD-MaxClique on
graph classes, such as chordal graphs, interval graphs, and permutation graphs.

Acknowledgments. This work is partially supported by NSERC Canada, and
JSPS KAKENHI Grant Numbers JP17K00024, JP21K11755 and JP22K11915.

References

1. J.R.S. Blair and B. Peyton. An introduction to chordal graphs and clique trees.
In: Graph Theory and Sparse Matrix Computation, IMA Vol.56, pp. 1–29 (1993).

2. H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern, Vol.11, pp.1–21
(1993).

3. K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs and graph planarity using PQ-tree algorithm. J. Comput. System Sci.,
Vol.13, pp.335–379 (1976).

4. P. Buneman. A characterization of rigid circuit graphs. Discrete Mathematics,
Vol.9, pp.205–212 (1974).

5. M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.
Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer International Pub-
lishing (2015).

6. M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, Vol.1, pp.237–267 (1976).

7. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of chordal graph. SIAM J. Comput.
Vol.1, pp.180–187 (1972).

8. F. Gavril. Algorithms on circular-arc graphs. Networks, Vol.4, pp.357–369 (1974).
9. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal

graphs. Journal of Combinatorial Theory, Series B, Vol.16, pp.47–56 (1974).
10. M.C. Golumbic. The complexity of comparability graph recognition and coloring.

Computing, Vol.18, pp.199–208 (1977).
11. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete

Mathematics, Vol.57, North-Holland Publishing Co, Amsterdam, The Netherlands
(2004).

12. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its con-
sequences in combinatorial optimization. Combinatorica, Vol.1(2), pp.169–197
(1981).

13. F. Kammer. Treelike and chordal graphs: algorithms and generalizations. Univer-
sity of Augsburg (2012).

14. R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pp.85–103 (1972).

15. D. Kratsch and L. Stewart. Domination on cocomparability graphs. SIAM J. Dis-
crete Math., Vol.6(3), pp.400–417 (1993).

16. R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive orienta-
tion. Discrete Math. Vol.201(1), pp.189–241 (1999).

17. O.J. Murphy. Computing independent sets in graphs with large girth. Discrete
Applied Mathematics, Vol.35, pp.167–170 (1992).

18. S. Olariu. An optimal greedy heuristic to color interval graphs. Information Pro-
cessing Letters, Vol.37(1), pp.21–25 (1991).

19. S. Poljak. A note on stable sets and coloring of graphs. Comment. Math. Univ.
Carolin., Vol.15, pp.307–309 (1974).

20. O. Seref, R.K. Ahuja, and J.B. Orlin. Incremental network optimization: theory
and algorithms. Operations Research, Vol.57(3), pp.586–594 (2009).

