
Minimum Algorithm Sizes for Self-stabilizing
Gathering and Related Problems of Autonomous

Mobile Robots (Extended Abstract)⋆

Yuichi Asahiro1⋆⋆ and Masafumi Yamashita2

1 Kyushu Sangyo University, Fukuoka, Japan (asahiro@is.kyusan-u.ac.jp)
2 Kyushu University, Fukuoka, Japan (masafumi.yamashita@gmail.com)

Abstract. We investigate swarms of autonomous mobile robots in the
Euclidean plane. Each robot has a target function to determine a desti-
nation point from the robots’ positions. All robots in a swarm conven-
tionally take the same target function. We allow the robots in a swarm to
take different target functions, and investigate the effects of the number
of distinct target functions on the problem-solving ability. Specifically,
we are interested in how many distinct target functions are necessary
and sufficient to solve some well-known problems which are not solvable
when all robots take the same target function, regarding target function
as a resource, like time and message, to solve a problem. The number of
distinct target functions necessary and sufficient to solve a problem Π
is called the minimum algorithm size (MAS) for Π . (The MAS is ∞, if
Π is not solvable even for the robots with unique target functions.) We
establish the MASs for solving the gathering and related problems from
any initial configuration, i.e., in a self-stabilizing manner. Our results
include: There is a family of the scattering problems cSCT (1 ≤ c ≤ n)
such that the MAS for the cSCAT is c, where n is the size of the swarm.
The MAS for the gathering problem is 2. It is 3, for the problem of gath-
ering all non-faulty robots at a single point, regardless of the number
(< n) of crash failures. It is however ∞, for the problem of gathering all
robots at a single point, in the presence of at most one crash failure.

Keywords: Autonomous mobile robot · Minimum algorithm size · Scattering ·
Gathering · Pattern formation · Crash failure.

1 Introduction

Swarms of anonymous oblivious mobile robots have been attracting many re-
searchers over four decades, e.g., [1, 3, 9–12, 15, 23, 24, 29, 30]. An anonymous
oblivious mobile robot, which is represented by a point in the Euclidean space,
looks identical and indistinguishable, lacks identifiers and communication de-
vices, and operates in Look-Compute-Move cycles: When a robot starts a cycle,
⋆ Due to space limitation, some proofs and contributions are deferred to full version [7].

⋆⋆ Corresponding author.
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it identifies the multiset of the robots’ positions, computes a destination point
using a function called target function based only on the multiset identified, and
then moves to the destination point. All papers listed above investigate swarms,
provided that all robots composing a swarm take the same target function. It
makes sense: Anonymous robots taking different target functions can behave, as
if they had different identifiers. On the other hand, robots with different iden-
tifiers can behave, as if they took different target functions, even when they
take the same one. The problems investigated cover from simple problems like
the convergence and the gathering problems (e.g., [1, 24]) to hard problems like
the formation problem of a sequence of patterns and the gathering problem
in the presence of Byzantine failures (e.g., [12, 19]). It has turned out that a
swarm of anonymous oblivious robots is powerful enough to solve sufficiently
hard problems. At the same time, however, we have realized limitation of its
problem-solving ability. For example, the gathering problem is, in general, not
solvable even if the number of robots is 2 [29].

A promising idea to increase the problem-solving ability of a swarm is to
allow robots to take different target functions. It is also natural, since almost all
artificial distributed systems enjoy unique identifiers, e.g., serial numbers. This
paper takes this approach, and investigates the effects of the number of distinct
target functions on the problem-solving ability. Specifically, we are interested in
how many distinct target functions are necessary and sufficient to solve some
problems which are not solvable when all robots take the same target function.

Let R and Φ be a swarm of n robots, and a set of target functions such
that |Φ| ≤ n, respectively. An assignment A : R → Φ of target functions is a
surjection fromR to Φ, i.e., every target function is assigned to at least one robot.
We call Φ an algorithm3 of R for a problem Π , if R solves Π , regardless of the
assignment A that R takes. (Thus, we cannot assume a particular assignment
to design target functions.) The minimum algorithm size (MAS) for Π is the
size |Φ| of algorithm Φ necessary and sufficient to solve Π . It is ∞, if Π is not
solvable even for the robots with unique target functions. We then investigate
the MASs of self-stabilizing algorithms for solving the gathering and related
problems from any initial configuration. In what follows, an algorithm means a
self-stabilizing algorithm, unless otherwise stated.

Motivations. We have investigated the time and the message complexities of
distributed problems, considering time and message as important resources in the
distributed computing. We regard target function as another resource. You will
find the MASs of many problems are larger than 1 (but not ∞). The complexity
of a problem is thus (at least partly) measured by its MAS. Also, an anonymous
swarm with c distinct target functions can be regarded as a swarm with c distinct
identifiers (and the same target function). Maintaining a large number of distinct

3 Here, we abuse a term “algorithm.” Despite that an algorithm must have a finite
description conventionally, a target function (and hence a set of target functions)
may not, as defined in Section 2. To compensate the abuse, when we will show the
existence of an algorithm, we insist on giving a finite procedure to compute it.
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identifiers not only is a centralized task, but also causes a substantial load. These
motivate our theoretical work of establishing the MASs for problems.
Homonymous distributed systems. A distributed system is homonymous, if
some processing elements (e.g., processors, processes, agents, or robots) may have
the same identifier. Two extreme cases are anonymous systems and those whose
identifiers are unique. The extreme cases have been investigated extensively.
A relatively small number of researches on “properly” homonymous distributed
system are known. Recall that we can identify an anonymous distributed system
with c distinct local algorithms with a homonymous distributed system with c
distinct identifiers.

Angluin [4] started investigation on anonymous computer networks in 1980,
and a few researchers (e.g., [8, 22, 25]) followed her, to pursuit a purely dis-
tributed algorithm which does not rely on a central controller, in the spirit
of the minimalist. Yamashita and Kameda [26] investigated the leader election
problem on homonymous computer networks in 1989. Their main research topic
was symmetry breaking, and they searched for a condition symmetry breaking
becomes possible. A rough conclusion established is that symmetry breaking is
impossible in general, but the probability that it is possible approaches to 1,
as the number of processors increases, provided that the network topology is
random, and identifiers, even if they are not unique, substantially increase the
probability. The leader election problem on homonymous computer networks has
also been investigated under several assumptions e.g., in [2, 14, 18, 28].

Other research topics on homonymous computer networks include failure
detectors [5] and the Byzantine agreement problem [13]. In [13], the authors
showed that the Byzantine agreement problem is solvable if and only if ℓ ≥
3f + 1 in the synchronous case, and it is solvable only if ℓ > n+3f

2 in the
partially synchronous case, where ℓ is the number of distinct identifiers and f
is an upperbound on the number of faulty processors. Thus, the MAS of the
Byzantine agreement problem is 3f + 1 in the synchronous case.

Only a few researchers have investigated homonymous swarms of robots:
Team assembly of heterogeneous robots, each dedicated to solve a subtask, is
discussed in [20], and the compatibility of target functions is discussed in [6, 11].

Contributions.We investigate the MASs for a variety of self-stabilizing prob-
lems, which are asked to solve problems from any initial configuration. The c-
scattering problem (cSCT) is the problem of forming a configuration in which
robots are distributed at least c different positions. The scattering problem is the
nSCT. The c-gathering problem (cGAT) is the problem of forming a configura-
tion in which robots are distributed at most c different positions. The gathering
problem (GAT) is the 1GAT. The pattern formation problem (PF) for a given
pattern G is the problem of forming a configuration P similar4 to G.

We also investigate problems in the presence of crash failures: A faulty robot
can stop functioning at any time, becoming permanently inactive. A faulty robot
may not cause a malfunction, forever. We cannot distinguish such a robot from

4 We say that one object is similar to another, if the latter is obtained from the former
by a combination of scaling, translation, and rotation (but not by a reflection).
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Table 1. For each problem Π , the MAS for Π , an algorithm for Π achieving the
MAS (and the theorem/corollary/observation citation number establishing the result
in parentheses) are shown.

problem Π MAS algorithm
cSCT (1 ≤ c ≤ n) c cSCTA (Thm. 1)
cGAT (2 ≤ c ≤ n) 1 2GATA (Cor. 1)

GAT 2 GATA (Thm. 3)
PF n PFA (Thm. 6)

fF1S (1 ≤ f ≤ n− 1) 1 1SCTA (Obs. 1)
fF2S (1 ≤ f ≤ n− 2) f + 2 (f + 2)SCTA (Thm. 7)

(n− 1)F2S ∞ – (Thm. 7)
fFcS (c ≥ 3, c+ f − 1 ≤ n) c+ f − 1 (c+ f − 1)SCTA (Thm. 7)
fFcS (c ≥ 3, c+ f − 1 > n) ∞ – (Thm. 7)

fFG (1 ≤ f ≤ n− 1) 3 SGTA (Thm. 8)
fFGP (1 ≤ f ≤ n− 1) ∞ – (Thm. 9)

a non-faulty one. The f-fault tolerant c-scattering problem (fFcS) is the problem
of forming a configuration in which robots are distributed at c (or more) different
positions, as long as at most f robots have crashed. The f-fault tolerant gathering
problem (fFG) is the problem of gathering all non-faulty robots at a point, as
long as at most f robots have crashed. The f-fault tolerant gathering problem to
f points (fFGP) is the problem of gathering all robots (including faulty ones)
at f (or less) points, as long as at most f robots have crashed.

Table 1 summarizes main results.
Organization. After introducing the robot model and several measures in
Sect. 2, we first establish the MAS for the cSCT in Sect. 3. Then the MASs
for the cGAT and the PF are respectively investigated in Sections 4 and 5. Sec-
tions 6 and 7 consider the MASs for the fFcS, the fFG, and the fFGP. Finally,
we conclude the paper by giving open problems in Sect. 8.

2 Preliminaries

The model. Consider a swarm R of n robots r1, r2, . . . , rn. Each robot ri has
its own unit of length and a local compass, which define an x-y local coordinate
system Zi: Zi is right-handed and self-centric, i.e., the origin (0, 0) always shows
the position of ri. Robot ri has the strong multiplicity detection capability, and
can count the number of robots that reside at a point.

A target function φ is a function from (R2)n to R2 ∪ {⊥} for all n ≥ 1 such
that φ(P ) = ⊥, if and only if (0, 0) 6∈ P .5 Here, ⊥ is a special symbol to denote
that (0, 0) 6∈ P . Given a target function φi, ri executes a Look-Compute-Move
cycle when it is activated:

Look: ri identifies the multiset P of the robots’ positions in Zi.
5 Since Zi is self-centric, (0, 0) 6∈ P means an error of eye sensor, which we assume
will not occur.
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Compute: ri computes xi = φi(P ). Since (0, 0) ∈ P , φi(P ) 6= ⊥. (In case φi is
not computable, we simply assume that φi(P ) is given by an oracle.)

Move: ri moves to xi, where it always reaches xi before this Move phase ends.

We assume a discrete time 0, 1, . . .. At each time t ≥ 0, a scheduler activates
some unpredictable non-empty subset (that may be all) of robots. Then activated
robots execute a cycle which starts at t and ends before (not including) t + 1,
i.e., R is semi-synchronous (SSYNC).

Let Z0 be the x-y global coordinate system. It is right-handed. The coordinate
transformation from Zi to Z0 is denoted by γi. We use Z0 and γi just for the
purpose of explanation. They are not available to any robot ri.

The position of robot ri at time t in Z0 is denoted by xt(ri). Then Pt =
{xt(ri) : 1 ≤ i ≤ n} is a multiset representing the positions of all robots at time
t, which is called the configuration of R at t.

Given an initial configuration P0, an assignment A of a target function φi
to each robot ri, and an SSYNC schedule, the execution is a sequence E :
P0, P1, . . . , Pt, . . . of configurations starting from P0. Here, for all ri and t ≥ 0,
if ri is not activated at t, then xt+1(ri) = xt(ri). Otherwise, if it is activated,
ri identifies Q

(i)
t = γ−1

i (Pt) in Zi, computes y = φi(Q
(i)
t ), and moves to y in

Zi. (Since (0, 0) ∈ Q
(i)
t , y 6= ⊥.) Then xt+1(ri) = γi(y). We assume that the

scheduler is fair: It activates every robot infinitely many times. Throughout the
paper, we regard the scheduler as an adversary.

An SSYNC schedule is said to be fully synchronous (FSYNC), if every robot
ri is activated every time instant t = 0, 1, 2, . . .. A schedule which is not SSYNC
is said to be asynchronous (ASYNC). Throughout the paper, we assume that the
scheduler is fair and SSYNC, i.e., it always produces a fair SSYNC schedule.

Orders and Symmetries. Let <6 be a lexicographic order on R2. For distinct
points p = (px, py) and q = (qx, qy), p < q, if either (i) px < qx or (ii) px =
qx and py < qy holds. Let ⊏ be a lexicographic order on (R2)n. For distinct
multisets of n points P = {p1,p2, . . . ,pn} and Q = {q1, q2, . . . , qn}, where
for all i = 1, 2, . . . , n − 1, pi ≤ pi+1 and qi ≤ qi+1 hold, P ⊏ Q, if there
is an i(1 ≤ i ≤ n − 1) such that pj = qj for all j = 1, 2, . . . , i − 1,7 and
pi < qi. The set of distinct points of P is denoted by P = {q1, q2, . . . , qm},
where |P | = n and |P | = m. We denote the multiplicity of q in P by µP (q), i.e.,
µP (q) = |{i : pi = q ∈ P}|. We identify P with the pair (P , µP ), where µP is a
labeling function to associate label µP (q) with each element q ∈ P .

Let GP be the rotation group GP of P about oP preserving µP , where oP is
the center of the smallest enclosing circle of P . The order |GP | of GP is denoted
by kP . We assume that kP = 0, if |P | = 1, i.e., if P = {oP}. The symmetricity
σ(P ) of P is GCD(kP , µP (oP )) [24]. See Fig. 1(1) for an example.

We use both measures kP and σ(P ). Suppose that P is a configuration in
Z0. When activated, a robot ri identifies the robots’ positions Q(i) = γ−1

i (P ) in

6 We use the same notation < to denote the lexicographic order on R2 and the order
on R to save the number of notations.

7 We assume p0 = q0.
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radius

(1) (2)

Fig. 1. (1) A configuration P , where P = {oP ,a, b, c}. If µP (a) = µP (b) = µP (c) = i
for an integer i > 0, then kP = 3. If µP (oP ) = 3j for an integer j ≥ 0, then
σ(P ) = 3; otherwise, σ(P ) = 1. (2) A configuration P , where P = {oP ,a, b, c,d}.
In Z0, oP = (0, 0), a = (−1/2, 1/2), b = (1, 0), c = (0, 1), d = (0,−1), and the
radius of C is 1. Solid arrows represent directions of x- and y-coordinates of Ξa

and Ξb, and have the unit length (the radius 1 of C). In Ξb, oP ,a, b, c, and d are
(1, 0),(3/2,−1/2),(0, 0),(1,−1), and (1, 1), respectively, and thus γ−1

b
(P ) = VP (b) =

{(1, 0), (3/2,−1/2), (0, 0), (1,−1), (1, 1)}.

Zi in Look phase. Since P and Q(i) are similar, kP = kQ(i) and σ(P ) = σ(Q(i))
hold, i.e., all robots can consistently compute kP and σ(P ).

On the contrary, robots cannot consistently compute lexicographic orders <
and ⊏. To see this fact, let x and y be distinct points in P in Z0. Then both
γ−1
i (x) < γ−1

i (y) and γ−1
i (x) > γ−1

i (y) can occur, depending on Zi. Thus robots
cannot consistently compare x and y using >. And it is the same for ⊏.

We introduce a total order ≻ on P , in such a way that all robots can agree
on the order, provided kP = 1. A key trick behind the definition of ≻ is to
use, instead of Zi, an x-y coordinate system Ξi which is computable for any
robot rj from Q(j). Let ΓP (q) ⊆ P be the orbit of GP through q ∈ P . Then
|ΓP (q)| = kP if q 6= oP , and µP (q

′) = µP (q) if q′ ∈ ΓP (q). If oP ∈ P ,
ΓP (oP ) = {oP}. Let ΓP = {ΓP (q) : q ∈ P}. Then ΓP is a partition of P . Define
an x-y coordinate system Ξq for each point q ∈ P \ {oP}. The origin of Ξq

is q, the unit distance is the radius of the smallest enclosing circle of P , the
x-axis is taken so that it goes through oP , and it is right-handed. Let γq be the
coordinate transformation from Ξq to Z0. Then the view VP (q) of q is defined to
be γ−1

q
(P ). Obviously VP (q′) = VP (q) (as multisets), if and only if q′ ∈ ΓP (q).

Let V iewP = {VP (q) : q ∈ P \ {oP }}. See Fig. 1(2) for an example.
A robot ri, in Compute phase, can compute from Q(i), for each q ∈ Q(i) \

{oQ(i)}, Ξq, VQ(i)(q), and V iewQ(i) . Since P and Q(i) are similar, by the defini-
tion of Ξq, V iewP = V iewQ(i) , which implies that all robots ri can consistently
compute V iewP . We define ≻P on ΓP using V iewP . For any distinct orbits
ΓP (q) and ΓP (q

′), ΓP (q) ≻P ΓP (q
′), if one of the following conditions hold:

1. µP (q) > µP (q
′).
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2. µP (q) = µP (q
′) and dist(q,oP ) < dist(q′,oP ) hold, where dist(x,y) is the

Euclidean distance between x and y.
3. µP (q) = µP (q

′), dist(q,oP ) = dist(q′,oP ), and VP (q) ⊐ VP (q
′) hold. 8

Then ≻P is a total order on ΓP . If kP = 1, since ΓP (q) = {q} for all q ∈ P , we
regard ≻P as a total order on P by identifying ΓP (q) with q. For a configuration
P (in Z0), from Q(i) (in Zi), each robot ri can consistently compute kP = kQ(i) ,
ΓP = ΓQ(i) and V iewP = V iewQ(i) , and hence ≻P=≻Q(i) . Thus, all robots can
agree on, e.g., the largest point q ∈ P with respect to ≻P .

3 C-scattering Problem

Let P = {P ∈ (R2)n : (0, 0) ∈ P, n ≥ 1}. Since a target function returns ⊥
when (0, 0) 6∈ P , we regard P as the domain of a target function.

The scattering problem (SCT) is the problem to have the robots occupy dis-
tinct positions, starting from any configuration [15]. For 1 ≤ c ≤ n, let the
c-scattering problem (cSCT) be the problem of transforming any initial configu-
ration to a configuration P such that |P | ≥ c. Thus, the nSCT is the SCT. An
algorithm for the cSCT is an algorithm for the (c− 1)SCT, for 2 ≤ c ≤ n.

Consider a set cSCTA = {sct1, sct2, . . . , sctc} of c target functions, where
target function scti is defined as follows for any P ∈ P .
[Target function scti]
1. If |P | ≥ c, then scti(P ) = (0, 0) for i = 1, 2, . . . , c.
2. If |P | = 1, then sct1(P ) = (0, 0), and scti(P ) = (1, 0) for i = 2, 3, . . . , c.
3. If 2 ≤ |P | ≤ c − 1, scti(P ) = (δ/(2(i + 1)), 0) for i = 1, 2, . . . , c, where δ is

the smallest distance between two (distinct) points in P .

Theorem 1. For any 1 ≤ c ≤ n, cSCTA is an algorithm for the cSCT. The
MAS for the cSCT is c.

Proof. We omit the proof that cSCTA is a correct algorithm for the cSCT, and
present only a proof that the MAS for the cSCT is at least c.

The proof is by contradiction. Suppose that the MAS for the cSCT is m < c
to derive a contradiction. Let Φ = {φ1, φ2, . . . , φm} be an algorithm for the
cSCT. Consider the following situation:

1. All robots ri (1 ≤ i ≤ n) share the unit length and the direction of positive
x-axis.

2. A target function assignment A is defined as follows: A(ri) = φi for 1 ≤ i ≤
m− 1, and A(ri) = φm for m ≤ i ≤ n.

3. All robots initially occupy the same location (0, 0). That is, P0 = {(0, 0),
(0, 0), . . . , (0, 0)}.

4. The schedule is FSYNC.

Let E : P0, P1, . . . be the execution of R starting from P0, under the above
situation. By an easy induction on t, all robots ri (m ≤ i ≤ n) occupy the
same location, i.e., for all t ≥ 0, xt(rm) = xt(rm+1) = · · · = xt(rn). Since
|Pt| ≤ m < c for all t ≥ 0, a contradiction is derived. ⊓⊔
8 Since dist(oP ,oP ) = 0, VP (q) is not compared with VP (oP ) with respect to ⊐.
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4 C-gathering Problem

Let P = {p1,p2, . . . ,pn} ∈ P , P = {q1, q2, . . . , qmP
}, mP = |P | be the size

of P , µP (q) denote the multiplicity of q in P , oP be the center of the smallest
enclosing circle CP of P , and CH(P ) be the convex hull of P .

The c-gathering problem (cGAT) is the problem of transforming any initial
configuration to a configuration P such that |P | ≤ c. The 1GAT is thus the
gathering problem (GAT). An algorithm for the cGAT is an algorithm for the
(c+ 1)GAT, for 1 ≤ c ≤ n− 1.

Under the SSYNC scheduler, the GAT from distinct initial positions is solv-
able (by an algorithm of size 1), if and only if n ≥ 3 [24], and the GAT from
any initial configuration is solvable (by an algorithm of size 1), if and only if
n is odd [16]. The MAS for the GAT is thus at least 2. Gathering algorithms
ψf−point(n) (for n ≥ 3 robots from distinct initial positions) in Theorem 3.4 of
[24] and Algorithm 1 (for odd n robots from any initial positions) in [16] share
the skeleton: Given a configuration P , if there is the (unique) “largest point”
q ∈ P , then go to q; otherwise, go to oP . Consider the following singleton
2GATA = {2gat} of a target function 2gat, which is a direct implementation of
this strategy using ≻P as the measure to determine the largest point in P .
[Target function 2gat]
1. If mP = 1, or mP = 2 and kP = 2, i.e., µP (q1) = µP (q2), then 2gat(P ) =

(0, 0).
2. If mP ≥ 2 and kP = 1, then 2gat(P ) = q, where q ∈ P is the largest point

with respect to ≻P .
3. If mP ≥ 3 and kP ≥ 2, then 2gat(P ) = oP .

Theorem 2. Suppose that all robots take 2gat as their target functions. Then
they transform any initial configuration P0 to a configuration P satisfying that
(1) mP = 1, or (2) mP = 2 and kP = 2.

Corollary 1. The MAS for the cGAT is 1, for all 2 ≤ c ≤ n.

Corollary 2. 2GATA solves the GAT, if and only if the initial configuration P0

satisfies either mP0 6= 2 or kP0 6= 2.

Corollary 2 has been obtained by some researchers: The GAT is solvable (for
the robots with the same target function), if and only if n is odd [16]. Or more
precisely, it is solvable, if and only if the initial configuration is not bivalent [9].
Note that the algorithm of [9] makes use of the Weber point and tolerates at
most n− 1 crashes.

Consider a set GATA = {gat1, gat2} of target functions gat1 and gat2 defined
as follows:
[Target function gat1]
1. If m = 1, then gat1(P ) = (0, 0).
2. If m = 2 and kP = 1, or m ≥ 3, gat1(P ) = 2gat(P ).
3. If m = 2 and kP = 2, then gat1(P ) = (0, 0).
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[Target function gat2]
1. If m = 1, then gat2(P ) = (0, 0).
2. If m = 2 and kP = 1, or m ≥ 3, then gat2(P ) = 2gat(P ).
3. Suppose that m = 2 and kP = 2. Let q (6= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. If q > (0, 0), then gat2(P ) = q. Else if
q < (0, 0), then gat2(P ) = 2q.

Theorem 3. GATA is an algorithm for the GAT. The MAS for the GAT is,
hence, 2.

For a configuration P , let −P = {−p : p ∈ P}. A target function φ is said to
be symmetric (with respect to the origin) if φ(P ) = −φ(−P ) for all P ∈ P . An
algorithm Φ is said to be symmetric if every target function φ ∈ Φ is symmetric.
Target function 2gat is symmetric, but GATA is not a symmetric algorithm.
Indeed, the next lemma holds.

Lemma 1. There is no symmetric algorithm of size 2 for the GAT.

There is however a symmetric gathering algorithm SGTA = {sgat1, sgat2,
sgat3}, where target functions sgat1, sgat2, and sgat3 are defined as follows:

[Target function sgat1]
1. If m = 1, then sgat1(P ) = (0, 0).
2. If m ≥ 3, or m = 2 and kP 6= 2, then sgat1(P ) = 2gat(P ).
3. Suppose that m = 2 and kP = 2. Let q (6= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. Then sgat2(P ) = −q.

[Target function sgat2]
1. If m = 1, then sgat2(P ) = (0, 0).
2. If m ≥ 3, or m = 2 and kP 6= 2, then sgat2(P ) = 2gat(P ).
3. Suppose that m = 2 and kP = 2. Let q (6= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. Then sgat2(P ) = −2q.

[Target function sgat3]
1. If m = 1, then sgat3(P ) = (0, 0).
2. If m ≥ 3, or m = 2 and kP 6= 2, then sgat3(P ) = 2gat(P ).
3. Suppose that m = 2 and kP = 2. Let q (6= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. Then sgat3(P ) = −3q.

Theorem 4. SGTA solves the GAT. The MAS of symmetric algorithm for the
GAT is 3.

5 Pattern Formation Problem

Given a goal pattern G ∈ (R2)n in Z0, the pattern formation problem (PF) for
G is the problem of transforming any initial configuration I into a configuration
similar toG. The GAT is the PF for a goal patternG = {(0, 0), (0, 0), . . . , (0, 0)} ∈
(R2)n, and the SCT is reducible to the PF for a right n-gon.
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Theorem 5 ([29]). The PF for a goal pattern G is solvable (by an algorithm
of size 1) from an initial configuration I such that |I| = |I|, if and only if σ(G)
is divisible by σ(I). The only exception is the GAT for two robots.

Thus a pattern G is not formable from a configuration I by an algorithm
of size 1, if σ(G) is not divisible by σ(I). In the following, we investigate an
algorithm that solves the PF from any initial configuration I, for any G.

Lemma 2. The MAS for the PF is at least n.

Proof. If there were a pattern formation algorithm for a right n-gon with size
m < n, it could solve the SCT, which contradicts to Theorem 1. ⊓⊔

Theorem 6. The MAS for the PF is n.

Proof. By Lemma 2, the MAS for the PF is at least n.
To show that the MAS for the PF is at most n, we propose a PF algorithm

PFA of size n, and then give a sketch of its correctness proof.
A scattering algorithm nSCTA transforms any initial configuration I into a

configuration P satisfying P = P . We can modify nSCTA so that the resulting
algorithm nSCTA∗ can transform any initial configuration I into a configuration
P satisfying (P = P and) σ(P ) = 1. On the other hand, there is a pattern
formation algorithm (of size 1) for G which transforms any initial configuration
P satisfying (P = P and) σ(P ) = 1 into a configuration similar to a goal pattern
G (see e.g., [29]). The pattern formation problem is thus solvable by executing
nSCTA∗ as the first phase, and then such a pattern formation algorithm as
the second phase, if we can modify these algorithms so that the robots can
consistently recognize which phase they are working. Algorithm PFA takes this
approach. Since the cases of n ≤ 3 are trivial, we assume n ≥ 4.

We say a configuration P is good, if P satisfies either one of the following
conditions (1) and (2):

(1) P = P , i.e., P is a set, and can be partitioned into two subsets P1 and P2

satisfying all of the following conditions:
(1a) P1 = {p1} for some p1 ∈ P .
(1b) dist(p1,o2) ≥ 10δ2, where o2 and δ2 are respectively the center and

the radius of the smallest enclosing circle C2 of P \ {p1}.
(2) The smallest enclosing circle C of P contains exactly two points p1,p3 ∈ P ,

i.e., p1p3 forms a diameter of C. Consider a (right-handed) x-y coordinate
system Z satisfying p1 = (0, 0) and p3 = (31, 0).9 For i = 1, 2, 3, let Ci

be the unit circle with center oi (and radius 1 in Z), where o1 = (0, 0),
o2 = (10, 0), and o3 = (30, 0). Let Pi ⊆ P be the multiset of points included
in Ci for i = 1, 2, 3. Then P is partitioned into three submultisets P1, P2,
and P3, i.e., P \ (P1 ∪P2 ∪P3) = ∅, and P1, P2, and P3 satisfy the following
conditions:
(2a) P1 = {p1}.

9 Note that Z is uniquely determined, and the unit distance of Z is dist(p1,p3)/31.
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(2b) P2 is a set (not a multiset).
(2c) P3 is a multiset that includes p3 as a member. It has a supermultiset

P ∗ which is similar to G, and is contained in C3, i.e., P3 is similar to a
submultiset H ⊆ G.

Let P be a good configuration. Then P satisfies exactly one of conditions (1)
and (2), and p1 is uniquely determined in each case. We first define nSCTA∗ =
{sct∗i : i = 1, 2, . . . , n}, which is a slight modification of nSCTA.
[Target function sct∗i ]
(I) If P is good: sct∗i (P ) = (0, 0) for i = 1, 2, . . . , n.
(II) If P is not good:
1. For i = 2, 3, . . . , n:

If P 6= P , then sct∗i (P ) = scti(P ). Else if P = P , then sct∗i (P ) = (0, 0).
2. For i = 1:

(a) If P 6= P , then sct∗1(P ) = scti(P ).
(b) If P = P and dist((0, 0),o) < 10δ, then sct∗1(P ) = p. Here o and δ are,

respectively, the center and the radius of the smallest enclosing circle
of P \ {(0, 0)}. If o 6= (0, 0), p is the point such that (0, 0) ∈ op and
dist(p,o) = 10δ. If o = (0, 0), p = (10δ, 0).

(c) If P = P and dist((0, 0),o) ≥ 10δ, then sct∗1(P ) = (0, 0).

Then nSCTA∗ transforms any initial configuration P0 to a good configuration
P . We next explain how to construct a configuration similar to G from a good
configuration P .
(I) Suppose that P satisfies condition (1) for a partition {P1, P2}, where P1 =
{p1}. If there is a point q such that P2 ∪ {q} is similar to G, then we move the
robot at p1 to q to complete the formation.

Otherwise, let p3 be the point satisfying o2 ∈ p1p3 and dist(o2,p3) = 21δ2,
where o2 and δ2 are, respectively, the center and the radius of the smallest
enclosing circle C2 of P2. We choose a point p in P2, and move the robot at p
to p3. Note that the robot at p is uniquely determined, since P2 = P2.

Then P is transformed into a configuration P ′ which is good, and satisfies
condition (2) for partition {P1, P2 \ {p2}, {p3}}.
(II) Suppose that P satisfies condition (2) for a partition {P1, P2, P3}, where
P1 = {p1}. Like the above case, we choose a point p in P2, and move the robot
at p to a point q. Here q must satisfy that there is a superset P ∗ of P3 ∪ {q}
which is contained in C3, and is similar to G.

By repeating this transformation, a configuration P such that |P3| = n − 1
and P3 is similar to a submultiset of G is eventually obtained, when P2 becomes
empty. Then p1 can move to q to complete the formation.

To carry out this process, we need to specify (i) p ∈ P2 in such a way that
all robots can consistently recognize it, and (ii) p3 in (I) and q in (II).

We define a point p ∈ P2. When |P2| = 1, p is the unique element of P2.
When |P2| ≥ 2, let P12 = P1 ∪ P2. Then kP12 = 1 by the definition of p1. Since
kP12 = 1, ≻P12 is a total order on P12 (and hence on P2), which all robots in P
(in particular, in P2) can compute. Let p ∈ P2 be the largest point in P2 with
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respect to ≻P12 . Since P2 is a set, the robot r at p is uniquely determined, and
r (or its target function) knows that it is the robot to move to p3 or q.

We define the target points p3 and q. It is worth emphasizing that r can
choose the target point by itself, and the point is not necessary to share by
all robots. Point p3 is uniquely determined. To determine q, note that P3 has a
supermultiset P ∗ which is similar to G, and is contained in C3. Thus r arbitrarily
chooses such a multiset P ∗, and takes any point in P ∗ \P3 as q. (There may be
many candidates for P ∗. Robot r can choose any one, e.g., the smallest one in
terms of ⊐ in its x-y local coordinate system.)

Using points p, p3, and q defined above, we finally describe PFA = {pf1, pf2,
. . . , pfn} for a goal pattern G, where target functions pfi(i = 1, 2, . . . , n) are
defined as follows:

[Target function pfi]

1. When P is not good: pfi(P ) = sct∗i (P ).
2. When P is a good configuration satisfying condition (1):

(2a) Suppose that there is a q such that P2 ∪ {q} is similar to G. Then
pfi(P ) = q if (0, 0) ∈ P1; otherwise, pfi(P ) = (0, 0).

(2b) Suppose that there is no point q such that P2 ∪ {q} is similar to G.
Then pfi(P ) = p3 if (0, 0) is the largest point in P2 with respect to
≻P1∪P2 ; otherwise, pfi(P ) = (0, 0).

3. When P is a good configuration satisfying condition (2): pfi(P ) = q if (0, 0)
is the largest point in P2 with respect to ≻P1∪P2 ; otherwise, pfi(P ) = (0, 0).

The correctness of PFA is clear from its construction. ⊓⊔

6 Fault Tolerant Scattering Problems

A fault means a crash fault in this paper. The f-fault tolerant c-scattering problem
(fFcS) is the problem of transforming any initial configuration to a configuration
P such that |P | ≥ c, as long as at most f robots have crashed.

Observation 1 1. 1SCTA solves the fF1S for all 1 ≤ f ≤ n, since |P | ≥ 1
for any configuration P . The MAS for the fF1S is thus 1 for all 1 ≤ f ≤ n.

2. The MAS for the nFcS is ∞ for all 2 ≤ c ≤ n, since |P0| = |Pt| = 1 holds
for all t ≥ 0, if |P0| = 1, and all robots have crashed at time 0.

Theorem 7. Suppose that 1 ≤ f ≤ n− 1 and 2 ≤ c ≤ n.

1. The MAS for the fF2S is ∞, if f = n − 1; otherwise if 1 ≤ f ≤ n − 2,
the MAS for the fF2S is f + 2. Indeed, (f + 2)SCTA solves the fF2S, if
1 ≤ f ≤ n− 2.

2. If 3 ≤ c ≤ n, the MAS for the fFcS is ∞, if c + f − 1 > n; otherwise if
c+ f − 1 ≤ n, the MAS for the fFcS is c+ f − 1. Indeed, (c+ f − 1)SCTA
solves the fFcS, if c+ f − 1 ≤ n.
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7 Fault Tolerant Gathering Problems

The f -fault tolerant c-gathering problem (fFcG) is the problem of gathering
all non-faulty robots at c (or less) points, as long as at most f robots have
crashed. The f -fault tolerant c-gathering problem to c points (fFcGP) is the
problem of gathering all robots (including faulty ones) at c (or less) points, as
long as at most f robots have crashed. When c = 1, fFcG is abbreviated as
fFG, and fFcGP is abbreviated as fFGP when c = f . The fFcG is not harder
than the fFcGP by definition. In general, the fFcGP is not solvable if c < f .

Theorem 8. SGTA solves the fFG for all f = 1, 2, . . . , n−1. The MAS for the
fFG is 3.

The fFGP is definitely not easier than the fFG by definition. You might
consider that the difference of difficulty between them would be subtle. Indeed,
it is not the case.

Theorem 9. The fFGP is unsolvable for all f = 1, 2, . . . , n − 1. That is, the
MAS for the fFGP is ∞ for all f = 1, 2, . . . , n− 1.

Proof (sketch). Suppose that there is an algorithm Φ for the fFGP. We arbi-
trarily choose a configuration P0 such that m0 > f , and consider any execution
E : P0, P1, . . . from P0, provided that no crashes occur, under a schedule S we
specify as follows: For Pt, let At be a largest set of robots such that its activation
does not yield a goal configuration. If there are two or more such largest sets, At

is an arbitrary one. Then S activates all robots in At at time t, and the execution
reaches Pt+1, which is not a goal configuration. (At may be an empty set.)

Then |U | ≤ f holds. Suppose that at t0 all robots in U crash, and consider
a schedule S ′ that activates At for all 0 ≤ t ≤ t0 − 1, and At ∪ U for all t ≥ t0.
Then the execution E ′ starting from P0 under S ′ is exactly the same as E , and
does not reach a goal configuration, despite that S ′ is fair; Φ is not an algorithm
for the fFGP. It is a contradiction. ⊓⊔

It is interesting to see that the fF(f+1)GP, which looks to be the “slightest”
relaxation of the fFGP (= fFfGP), is solvable by an easy algorithm 2GATA of
size 1.

Theorem 10. 2GATA solves both of the fF2G and the fF(f + 1)GP, for all
f = 1, 2, . . . , n − 1. The MASs for the fF2G and fF(f + 1)GP are both 1, for
all f = 1, 2, . . . , n− 1.

8 Conclusions

There is a problem like the self-stabilizing gathering problem which is not solv-
able by a swarm of anonymous oblivious mobile robots when all robots take
the same target function. For a problem Π , we have investigated the minimum
algorithm size (MAS) for Π , which is the number of distinct target functions
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necessary and sufficient to solve Π from any initial configuration. To figure out
the effects of the number of distinct target functions on the problem-solving
ability, we have established the MASs for the gathering and related problems.

As mentioned in Section 1, we consider target function as a resource like time
and message, and regard the MAS of a problem as a measure to measure the
complexity of the problem. There is an apparent trade-off between the number
of distinct target functions and the time complexity, but this topic has not been
investigated in this paper, and is left as an interesting open problem.

In the real world, gathering objects needs energy (since entropy decreases),
while scattering them does not (since entropy increases). Thus a natural guess
would be that cGAT is harder than cSCT. On the contrary, we have showed
that, for 2 ≤ c ≤ n, the MAS is c for cSCT, while it is 1, for cGAT. Other main
results are summarized in Table 1.

Finally, we conclude the paper by giving a list of some open problems.

1. What is the MAS for the gathering problem under the ASYNC scheduler?
2. What is the MAS for the pattern formation problem for a fixed G?
3. What is the MAS for the f -fault tolerant convergence problem to f points,

for f ≥ 3?
4. What is the MAS for the Byzantine fault tolerant gathering problem?
5. Characterize the problem whose MAS is 2.
6. Investigate trade-off between the number of distinct target functions and the

time complexity.
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