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Abstract. Graph orientation transforms an undirected graph into a di-
rected graph by assigning a direction to each edge. Among the many
different optimization problems related to graph orientations, we focus
here on the Shortest Longest-Path Orientation problem (SLPO) which
is a generalization of the well-known Minimum Graph Coloring prob-
lem. The input to SLPO is an edge-bi-weighted undirected graph in
which every edge has two (possibly different and not necessarily posi-
tive) lengths associated with its two directions. The goal is to find an
orientation of the input graph that minimizes the length of the longest
simple directed path. Recently, polynomial-time algorithms for simple
graph structures such as paths, cycles, stars, and trees were proposed,
and a new polynomial-time inapproximability result was also established.
This paper presents (i) an O(n2 log n)-time algorithm for trees, which is a
significant improvement over the previously fastest algorithm whose time
complexity was Ω(n14) and (ii) polynomial-time algorithms for trees and
spiders that run even faster than (i) as long as every edge weight is an
integer and the total weight of the edges is sub-exponential.

Keywords: Graph orientation · Longest path · Tree · Spider.

1 Introduction

An orientation of an undirected graph is an assignment of a direction to each
of its edges. Many interesting optimization problems involving graph orientation
have been extensively researched, e.g., to find an orientation where the total
arc-connectivity is maximized [12], an orientation minimizing the maximum out-
degree [2, 4–6, 16], and an orientation maximizing the number of source-target
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vertex pairs from a given set that become connected by directed source-to-target
paths [9, 14]. Certain graph orientation problems are equivalent to well-known
classic problems. For example, Minimum Vertex Cover (or Maximum Indepen-
dent Set) is equivalent to orienting an undirected graph such that the number of
vertices with outdegree at least one is minimized (or with outdegree zero is max-
imized) [1]. A natural generalization of Minimum Vertex Cover (or Maximum
Independent set) where the outdegree threshold is raised from one (or zero) to
any positive integer W was studied in [1].

A graph orientation problem called Unweighted Shortest-Longest-Path Ori-
entation (USLPO) can be viewed as a generalization of Minimum Graph Col-
oring. The objective of USLPO is to find an orientation of an undirected, un-
weighted graph that minimizes the length of a longest simple directed path. For
any undirected graph G, let H(G) and χ(G) denote the length of a longest sim-
ple directed path in an optimal solution to USLPO for G and the chromatic
number of G, respectively. It is known that H(G) + 1 = χ(G) [10, 11, 15, 17],
even when the output orientation must be acyclic [8]. This equality immediately
implies the intractability of USLPO: USLPO is NP-hard since Minimum Graph
Coloring is NP-hard [13]. Moreover, USLPO cannot be approximated within a
ratio of (3/2− ε) for any constant ε > 0 in polynomial time unless P=NP even
if restricted to 4-regular planar graphs, since it is NP-hard to determine if a
4-regular planar graph G satisfies χ(G) ≤ 3 [7].

This paper considers a generalization of USLPO named Shortest Longest-
Path Orientation (SLPO) that takes an edge-bi-weighted graph as input, in which
every edge {u, v} has two (potentially different and not necessarily positive)
weights w(u, v) and w(v, u) representing the lengths of its two possible directions
(u, v) and (v, u). The goal of SLPO is to find an orientation minimizing the length
of a longest directed path in the resulting directed graph. If some edge lengths
(weights) are negative, then a longest directed path is not necessarily a maximal
directed path. Hence, we consider two variants SLPOm and SLPOs, in which
the longest directed path is taken, respectively, among maximal simple directed
paths only and among all simple directed paths. As stated above, USLPO is
NP-hard which immediately implies that SLPOm and SLPOs are also NP-hard
for general graphs. In fact, SLPOm and SLPOs are NP-hard even for subcubic
planar graphs [3], where a graph is subcubic if the degree of every vertex is at
most three. On the positive side, polynomial-time algorithms for simple graph
structures (more precisely, trees, paths, cycles, and stars), are known [3].

This paper further investigates the computational complexity of SLPOm and
SLPOs. The contributions are as follows.

1. An O(n log∆)-time algorithm which determines if there is an orientation
with cost at most a fixed value B for SLPOm on trees, where n is the num-
ber of vertices and ∆ is the maximum degree of a vertex. This leads to an
O(n2 log n)-time algorithm for SLPOm on trees, which is a significant im-
provement over the previously fastest algorithm that runs in polynomial time
but has a time complexity of Ω(n14) [3]; and also an O(n log∆ logZ)-time al-
gorithm for SLPOm on trees under the assumption that all edge weights are



Table 1: Summary of the results from [3] (top) and this paper (bottom), where
n is the number of vertices, ∆ is the maximum degree of a vertex, and Z =∑

{u,v} max{|w(u, v)|, |w(v, u)|}. The time complexities indicated by “*” need
the assumption that every edge weight is an integer.

Graph class SLPOm SLPOs Reference/Theorems

Path O(n log n) O(n) [3]

Cycle O(n2 log n) O(n) [3]

Star O(n log n) O(n log n) [3]

Tree Ω(n14) Ω(n14) [3]

Subcubic Planar NP-hard NP-hard [3]

Tree
O(n2 log n) O(n2 log n)

Theorems 1 and 2
O(n log∆ logZ)∗ O(n log∆ logZ)∗

Spider — O((n+∆ log∆) logZ)∗ Theorem 3

integers, where Z =
∑

{u,v} max{|w(u, v)|, |w(v, u)|}. The latter runs faster
than the former when Z is sub-exponential. Utilizing these algorithms for
SLPOm on trees, we can solve SLPOs on trees in the same time complexity.

2. Even faster algorithm for SLPOs on spiders (a subclass of trees), also under
the assumption that all edge weights are integers and Z is sub-exponential.

Table 1 summarizes the previously known and the new results in this paper.
The organization of the paper is as follows. The problems SLPOs and SLPOm

are defined formally in Sec. 2. Sections 3 and 4 respectively describe our new
algorithms for trees and spiders. Concluding remarks are given in Sec. 5. Due to
space limitations, many details and all proofs are omitted.

2 Preliminaries

We shall use the following definitions and terminology from Sec. 2 in [3]. Let
G = (V,E) be an undirected graph. The vertex set and the edge set of G are
denoted by V (G) and E(G), respectively. For a vertex v, its unweighted degree
is denoted by deg(v), and ∆ denotes the maximum unweighted degree of all
vertices. Replacing each undirected edge {u, v} ∈ E by either the directed edge
(di-edge for short) (u, v) or the di-edge (v, u) gives a directed graph (di-graph

for short). The resulting di-graph G̃ is called an orientation of G. The vertex

set and the di-edge set of G̃ are respectively denoted by V (G̃) (= V (G)) and

E(G̃). Let O(G) denote the set of all orientations of G. We sometimes regard an

orientation as a set of di-edges: If a di-edge (u, v) is included in E(G̃), we write

(u, v) ∈ G̃. The unweighted indegree and the unweighted outdegree of a vertex

v in G̃ are denoted by deg−
G̃
(v) and deg+

G̃
(v), respectively.

An edge-bi-weighted graph G = (V,E,w) is an undirected graph G =
(V,E) in which every edge {u, v} ∈ E has a pair of weights w(u, v) and
w(v, u) associated with the two directions (u, v) and (v, u), respectively.
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(a) The wl/wr below each edge speci-
fies the weights wl and wr of that edge’s
left and right directions.

3 2 4

(b) An orientation G̃ with hs(G̃) = 5

and hm(G̃) = 5.

3 -1 -4

(c) An orientation G̃ with hs(G̃) = 3

and hm(G̃) = 3.

3 2 -4

(d) An orientation G̃ with hs(G̃) = 5

and hm(G̃) = 1.

Fig. 1: (a) An edge-bi-weighted graph G, (b) an example orientation of G, (c) an
optimal orientation of G under cost function Hs (here, Hs(G) = 3), and (d) an
optimal orientation of G under cost function Hm (here, Hm(G) = 1).

The weights w(u, v) and w(v, u) are possibly nonpositive. We define Z =∑
{u,v}∈E max{|w(u, v)|, |w(v, u)|}. A directed path (di-path for short) in a di-

graph G̃ is a sequence ⟨v1, v2, . . . , vq⟩ of vertices such that for k ∈ {1, 2, . . . , q−1},
the graph G̃ contains the di-edge (vk, vk+1). We say that this di-path starts
from v1, ends at vq, and passes vi for 2 ≤ i ≤ q − 1. The length of a di-

path
−→
P = ⟨v1, v2, . . . , vq⟩ in an orientation of an edge-bi-weighted graph is:

W (
−→
P ) =

∑q−1
k=1 w(vk, vk+1). The di-path

−→
P is simple if all vertices in

−→
P are

distinct. Also,
−→
P is maximal if it is not contained in any di-path with more ver-

tices. If some edge weights are negative, then a longest di-path is not necessarily
maximal. Hence, two alternative cost functions for an orientation are defined;
see Fig. 1 for an example that shows the difference between them.

Definition 1 ([3]). Define the following two cost measures for an orientation

G̃ of an edge-bi-weighted graph G:

hs(G̃) = max{W (
−→
P ) |

−→
P is a simple di-path in G̃} and

hm(G̃) = max{W (
−→
P ) |

−→
P is a maximal simple di-path in G̃}.

The corresponding two cost functions for orienting G are:

Hs(G) = min{hs(G̃) | G̃ ∈ O(G)} and Hm(G) = min{hm(G̃) | G̃ ∈ O(G)}.

Note that a di-path including only one vertex is a simple di-path with zero
length. Hence hs(G̃) ≥ 0 holds for any G̃, and thus Hs(G) ≥ 0 holds for any G.

The two problem variants that we consider in this article are the following:

The Shortest Longest-Path Orientation Problem, variants SLPOs & SLPOm:

Input: An undirected, edge-bi-weighted graph G.

Output: An orientation G̃ of G such that hs(G̃) = Hs(G) (for SLPOs) or

hm(G̃) = Hm(G) (for SLPOm).



For an edge-bi-weighted graph G and a fixed value B, an orientation G̃ of G is
B-feasible if hx(G̃) ≤ B for SLPOx (x ∈ {s,m}). Our basic strategy for solving
SLPOs/SLPOm is to design an algorithm that answers the following question:

Question 1. Does G have a B-feasible orientation?

3 Trees

In this section, we first design a dynamic programming algorithm to answer
Question 1 for cost function Hm, and then utilize it to solve both of SLPOm and
SLPOs. First, we introduce several definitions only used for trees in Section 3.1
Then, Sections 3.2 and 3.3 describe three procedures that are to be applied
locally to subtrees of the input tree in order to transform it into a star. Section 3.4
presents an algorithm that uses these procedures in order to answer Question 1
for Hm. Finally, Section 3.5 describes the main algorithm for SLPOm and how
to apply it to also solve SLPOs restricted to trees.

3.1 Preliminaries for Trees

Let T = (V,E) be an undirected edge-bi-weighted tree with root r. Assume that
V = {v1, v2, . . . , vn−1, vn} and vn = r without loss of generality. The parent of a
vertex vi in T is denoted by p(vi) if it exists. For a vertex vi, Ii denotes the set
of indices of children of vi in T . The subtree rooted at vi in T is denoted by Ti.

Consider an orientation T̃ of T . Let T̃i be the directed subtree rooted at vi in

T̃ . For a di-path
−→
P from vi to vj (note that it is unique) in a directed tree T̃ of

T , the length of
−→
P is defined as the total weight of di-edges in

−→
P , and is denoted

by W (i, j). On the other hand, if there is no path from vi to vj , W (i, j) = ∞.

Let V i
↑ be the set {vj | T̃i contains an upward di-path from vj to vi}, i.e., the set

of all vertices that can reach vi by following an upward path in T̃i. Similarly, V i
↓

is defined as the set {vj | T̃i contains an downward di-path from vi to vj}. We
use the convention that a path may have zero edges, so vi ∈ V i

↑ and vi ∈ V i
↓ ,

by which V i
↑ ̸= ∅, V i

↓ ̸= ∅, and W (i, i) = 0. Note that V i
↑ ∪ V i

↓ = V (Ti) does

not necessarily hold. Next, let W i
↑ for SLPOm be the length of a longest di-path

from vertices in V i
↑ to vi, and analogously for W i

↓ . Formally,

W i
↑ = max

{
W (j, i) | vj ∈ V i

↑ , deg−
T̃i
(vj) = 0

}
and

W i
↓ = max

{
W (i, j) | vj ∈ V i

↓ , deg+
T̃i
(vj) = 0

}
.

For SLPOs, W
i
↑ and W i

↓ are defined to take all simple di-paths into account:

W i
↑ = max

{
W (j, i) | vj ∈ V i

↑
}

and W i
↓ = max

{
W (i, j) | vj ∈ V i

↓
}
.

For T̃i and a child vj of vi, i.e., j ∈ Ii, T̃i(j) represents the directed subtree

rooted at vj in T̃i. If we are given an orientation T̃ of T , then T̃j equals T̃i(j).



Fig. 2: Illustration of Observation 1. We consider three di-paths which may be
(a part of) a (maximal) longest di-path.

However, we sometimes need to define or construct a part of an orientation of
the whole graph before the other parts. For this purpose, we define T̃i(j). The

next observation gives the maximum length of a (maximal) simple di-path in T̃i,

where max{hx(T̃i(j)) | j ∈ Ii} for x ∈ {m, s} represents the maximum length

of a (maximal) simple di-path in T̃i, which does not pass vi. Figure 2 illustrates
this observation.

Observation 1 For a directed subtree T̃i, it holds that

hm(T̃i) = max
{
W i

↑ +W i
↓ , max

{
hm(T̃i(j)) | j ∈ Ii

}}
and

hs(T̃i) = max
{
W i

↑ , W i
↓ , W i

↑ +W i
↓ , max

{
hs(T̃i(j)) | j ∈ Ii

}}
.

In the above, we assumed that the root vertex r = vn. However the choice
of the root vertex r is not important for the following reason. Based on Obser-
vation 1, for a directed tree T̃ with root r = vn, it holds that hm(T̃ ) = hm(T̃n)

and hs(T̃ ) = hs(T̃n). Pick a child vi of r(= vn), where i ̸= n. When computing

hm(T̃n) or hs(T̃n), a di-edge between r and vi are in consideration as a part
of computing W n

↑ and W n
↓ . Before this, di-edges between vi and children of vi

were taken into account during computation of W i
↑ and W i

↓ . Thus, letting vi as

a root of T̃ instead of r, just changes the order of the computation of W ↑ ’s and
W ↓ ’s. Thus, we can choose an arbitrary vertex as a root of a tree.

The Ω(n14)-time algorithm in [3] was a dynamic programming algorithm
that implemented Observation 1 directly. To obtain a fast algorithm, we need a
more refined approach. To this end, we propose a new technique for answering
Question 1 efficiently by using graph transformations and another type of dy-
namic programming. Our strategy is to minimize W i

↑ and W i
↓ for every vertex

vi under the condition that max{hx(T̃i(j)) | j ∈ Ii)} ≤ B for x ∈ {m, s} and a
fixed value B in a bottom-up manner by maintaining two values L i

↑ and L i
↓ for



Algorithm 1: OrientStarDownB(Ti)

Input: an edge-bi-weighted star (subgraph) Ti of T , where Ti is rooted at vi,
the vertex set of Ti is {vi, u1, u2, . . . , ud}, edge set or Ti is
{{vi, u1}, {vi, u2}, . . . , {vi, ud}}, and u1, u2, . . . , ud are all leaves of T

Output: an orientation of Ti and its cost
1 Sort w(vi, uj)’s in the non-decreasing order. Without loss of generality, we

assume w(vi, u1) ≤ w(vi, u2) ≤ · · · ≤ w(vi, ud);

2 For each j ∈ {1, 2, . . . , d− 1}, cj ← max{w(uk, vi) | j +1 ≤ k ≤ d} and let j be
an index such that w(uj , v) = cj ;

3 Find the smallest j ∈ {1, 2, . . . , d− 1} such that cj + w(vi, uj) ≤ B holds. If

there exists such j, then let T̃i be an orientation of Ti in which each edge
{vi, uk} is directed toward uk for 1 ≤ k ≤ j, and toward vi for j + 1 ≤ k ≤ d,
and C ← cj + w(vi, uj). Otherwise, C ←∞.

4 Let T̃up
i (or T̃ down

i ) be an orientation of Ti in which every edge {vi, uk} is
directed toward vi (or toward uk). If max{w(uk, vi) | 1 ≤ k ≤ d} ≤ B, then
Cup ← 0, otherwise Cup ←∞. Also, Cdown ← w(vi, ud).

5 Cmin ← min{C,Cup, Cdown}. If Cmin = C, Cup, or Cdown, then output (T̃i, C),

(T̃up
i , Cup), or (T̃ down

i , Cdown), respectively;

each vertex vi, defined as follows:

L i
↑ = min{W i

↑ | T̃i is an orientation of Ti, max{hx(T̃i(j)) | j ∈ Ii} ≤ B} and

L i
↓ = min{W i

↓ | T̃i is an orientation of Ti, max{hx(T̃i(j)) | j ∈ Ii} ≤ B},

where x = m for SLPOm and x = s for SLPOs. For a leaf vi, L
i
↑ = L i

↓ = 0.

Algorithms to compute L i
↑ and L i

↓ of a subtree in the input tree for SLPOm

are given in Sec. 3.2. In Sec. 3.3, we transform a tree into another one based on
these algorithms. Based on Observation 1 an algorithm to answer Question 1 for
SLPOm is given in Sec. 3.4. Finally, Sec. 3.5 describes the whole algorithm for
SLPOm and how to apply it to SLPOs.

3.2 Procedures for Stars

Let T be a tree with root r. Suppose that children of a vertex vi are all leaves
(note that there must exist such a vertex). Let u1, . . . , ud for d ≥ 1 be the children
of vi. The subtree Ti rooted at vi is a star, whose vertex set is {vi, u1, u2, . . . , ud}.
In this subsection, we propose an algorithm for a star, which will be used as a sub-
routine. For a fixed B, an algorithm OrientStarDownB (listed in Algorithm 1)
outputs an orientation of Ti such that the length of the maximal di-path (di-
edge) starting from v is minimum and every other maximal di-path ending at v
or passing v has length at most B, if such an orientation exists.9

Figure 3(b) illustrates an example of the output of OrientStarDownB for the
star Ti in Fig. 3(a) and B = 8. In Step 2, we compute c2 by directing the edges

9 This algorithm differs from the known ones for stars in [3].
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(a) A star Ti.

1

2

3

6

4

(b) Computing c2 = w(u4, vi) = 6 and
hence 2 = 4 for Ti.

Fig. 3: An example of OrientStarDownB for a star Ti in (a) and B = 8. (b) is

the obtained orientation T̃i of Ti.

{vi, u1} and {vi, u2} as (vi, u1) and (vi, u2), respectively, and directing other
edges toward vi. Then, we obtain c2 = max{w(uk, vi) | 3 ≤ k ≤ 5} = w(u4, vi)
and hence we set 2 = 4, where 2 indicates a di-edge having maximum weight
among di-edges (uk, vi)’s for 2 < k. Then, we see that the longest maximal di-
path in this orientation is ⟨u2, vi, u2⟩ = ⟨u4, vi, u2⟩ with length 8 and thus C = 8
in Fig. 3(b). As for Step 4, Cup = ∞ since w(u2, vi) = 9 > B(= 8) and also

Cdown = w(vi, u5) = 9. Step 5 may output T̃ down
i (or T̃up

i ) even if Cdown > B

(or Cup > B), when C > Cdown (or C > Cup). The reason is that T̃ down
i (or

T̃up
i ) may minimize the length of a longest maximal di-path passing vi in the

whole orientation of T due to the possible existence of an edge with negative
weight. (This is not the case in the example in Fig. 3.) Finally, the orientation
in Fig. 3(b) is the output of OrientStarDownB(Ti) for B = 8, since C < Cdown.

Let T̃D
i be the orientation obtained by OrientStarDownB for Ti. Define an in-

dex iD as follows: If Cmin = Cup, then let iD = 0 and let w(v, uiD ) = w(v, u0) = 0
(though there is no vertex u0). If Cmin = Cdown, then let iD = d (and hence
w(v, uiD ) = w(v, ud)). Otherwise if Cmin = C, then let iD be the index j
found in Step 3 of OrientStarDownB . The following lemma guarantees that
OrientStarDownB outputs an intended orientation which gives L i

↓ (= hm(T̃D
i )).

Lemma 1. In T̃D
i , the length of the longest di-edge starting from vi is the min-

imum among all orientations of T̃i such that every maximal di-path ending at vi
or passing vi has length at most B. Moreover, the orientation T̃D

i of Ti can be
obtained in O(d log d) time.

We define an algorithm OrientStarUpB in the same way as OrientStarDownB ,
but where the order of vi and uk is swapped when weights of edges are handled
and where the directions of edges determined in Steps 3 and 4 are the op-
posite. (We omit the description of OrientStarUpB , since it is very similar to

OrientStarDownB .) Then, Let T̃
U
i be the orientation with cost L i

↑ (= hm(T̃U
i )),

which is obtained by applying OrientStarUpB to Ti. The index iU is defined
similarly to the index iD.



Algorithm 2: DeleteLeaf(T , vi, L
i
↓ , L

i
↑ )

Input: an edge-bi-weighted rooted tree T , a vertex vi whose children are all
leaves in T , and two values Li

↓ and Li
↑

Output: an edge-bi-weighted tree T ′

1 Let the children of vi in T be u1, u2, . . . , ud (d ≥ 1);
2 Remove the vertices u1, u2, . . . , ud and the edges {vi, u1}, {vi, u2}, . . . , {vi, ud}

from T ;
3 Update the weights of the edge {p(vi), vi} as w(p(vi), vi)← w(p(vi), vi) + Li

↓
and w(vi, p(vi))← w(vi, p(vi)) + Li

↑ ;
4 Output the resulting T (as T ′);

5/1

9/2

3/3

6/4

4/9
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(a) A tree T and Ti (in Fig. 3), where iD = 2
and iU = 5.

4/8

(b) Another tree T ′ constructed
from T by DeleteLeaf.

Fig. 4: An example of DeleteLeaf for B = 8.

Lemma 2. In T̃U
i , the length of the longest di-edge ending at vi is the minimum

among all orientations of T̃i such that every maximal di-path starting from vi
or passing vi has length at most B. Moreover, the orientation T̃U

i of Ti can be
obtained in O(d log d) time.

3.3 Transformation

Let T be an edge-bi-weighted tree, which is not a star. Taking L i
↓ and L i

↑
computed by the procedures in the previous subsection as input, the algorithm
DeleteLeaf (listed in Algorithm 2) constructs another tree T ′ that has fewer
vertices than T . The resulting T ′ may be a star.

Figure 4 illustrates an example of DeleteLeaf for B = 8. In Fig. 4(a), the
part Ti is the same as in Fig. 3, where iD = 2 with L2

↓ = 2 and iU = 5

with L5
↑ = 4. Thus, DeleteLeaf constructs another tree in Fig. 4(b), in which

w(p(vi), vi)) is updated to w(p(vi), vi) + (vi, u2) = 8 and also w(vi, p(vi)) is
updated to w(vi, p(vi)) + w(u5, vi) = 4.

Procedure DeleteLeaf only modifies T around vi and its neighboring vertices,
so its running time can be bounded as follows.



Lemma 3. Given an edge-bi-weighted rooted tree T and a vertex vi (with L i
↓

and L i
↑ ) as input, DeleteLeaf runs in O(d) time, where d = deg(vi).

The following lemma relates the optimal cost of T ′ to that of T . This leads
to an algorithm OrientTreeB in the next subsection.

Lemma 4. Hm(T ) ≤ B if and only if Hm(T ′) ≤ B.

3.4 An Algorithm to Answer Question 1

In this subsection, we describe the algorithm OrientTreeB which answers Ques-
tion 1 based on the results in the previous subsections. The basic strategy of
OrientTreeB is as follows. First we construct a sorted list S of vertices in the
input tree T . This list indicates the order of vertices to apply OrientStarDownB ,
OrientStarUpB , and DeleteLeaf. By DeleteLeaf, T is transformed to another
tree T ′. Then we remove the first element of S for T ′, where the first element
of the resulting new list indicates the next target to apply OrientStarDownB ,
OrientStarUpB , and DeleteLeaf. In this way, we iteratively apply these three
procedures and then obtain a star. Finally, we apply BestOrientStarm in [3] to
compute an optimal orientation of the obtained star.

We start with the construction of the list S of vertices in T . First choose a
vertex arbitrarily as the root r. By using the breadth first search starting from
r, we construct a sorted list S which contains all non-leaf vertices in T , and if
i ≤ j, the distance between S[i] and r is not smaller than that between S[j] and
r, where a tie is broken arbitrarily. Suppose that we apply DeleteLeaf to the first
vertex S[1] of S and its children in T , and then obtain a new tree T ′, One can
see that children of S[2] must be leaves in T ′, even if S[1] is a child of S[2] in
T , since DeleteLeaf transforms a star formed by S[1] and its children in T to a
vertex. Hence we can apply DeleteLeaf to S[2] for T ′ as the next step. Since the
construction of S is done mainly by the breadth first search, we have:

Lemma 5. The construction of the list S is done in O(n) time.

The algorithm OrientTreeB is listed in Algorithm 3. It uses an algorithm
named BestOrientStarm from [3], which solves SLPOm on stars exactly. The
following lemma guarantees the correctness of OrientTreeB .

Lemma 6. OrientTreeB answers Question 1 in O(n log∆) time.

3.5 Time Complexity and Cost Function Hs

The whole algorithm for cost function Hm is listed in Algorithm 4. Here it
outputs the value Hm(T ) only. However, it is easy to output an orientation
with cost Hm(T ) by modifying OrientTreeB so that it also outputs an obtained
orientation when answering “Yes”.

Theorem 1. If the input is a tree, then SLPOm can be solved in O(n2 log n)
time. Moreover, if every edge weight of the input tree is an integer, SLPOm can
be solved in O(n log∆ logZ) time.



Algorithm 3: OrientTreeB(T, S)

Input: an edge-bi-weighted tree T which is not a star, and a list S of vertices
Output: ”Yes” or “No”

1 while T is not a star do
2 Suppose the first element S[1] of S is vi;

3 (T̃D
i , Li

↓ )← OrientStarDownB(Ti) and (T̃U
i , Li

↑ )← OrientStarUpB(Ti);
4 T ← DeleteLeaf(T, vi, L

i
↓ , L

i
↑ ), and delete S[1] from S;

5 Apply BestOrientStarm in [3] to T . If the obtained orientation has cost at
most B, output “Yes”, otherwise, output “No”;

Algorithm 4: OrientTreem(T )

Input: an edge-bi-weighted tree T which is not a star
Output: Hm(T )

1 Construct the list S of T ;
2 Find the minimum B such that OrientTreeB(T, S) returns “Yes”;
3 Output B;

To solve SLPOs, we reduce SLPOs to SLPOm. To this end, we introduce
an algorithm AddLeaf (listed in Algorithm 5). This algorithm transforms an
edge-bi-weighted graph G to another edge-bi-weighted graph G′ in linear time
by adding leaves to G. The resulting graph G′ does not always maintain the
structural properties of G. For example, if G is a tree then so is G′, but if G is
a cycle then G′ is not. However, the next lemma shows that the optimal cost of
G for cost function Hs transfers to G′.

Lemma 7. Hs(G) = Hm(G′)

The important point here is that AddLeaf transforms a tree to another tree.
Thus, Theorem 1 and Lemma 7 immediately yield the following theorem.

Theorem 2. If the input is a tree, then SLPOs can be solved in O(n2 log n)
time. Moreover, if every edge weight of the input tree is an integer, SLPOs can
be solved in O(n log∆ logZ) time.

4 Spiders with Cost Function Hs

This section presents an algorithm that solves SLPOs on spiders under the as-
sumption that all edge weights are integers. It runs faster than the algorithm for
trees when Z is sub-exponential. A spider is a tree with exactly one vertex r of
degree greater than 2, referred to as the root vertex. Let G be a spider which has
root vertex r with degree ∆ ≥ 3 and undirected paths Pi = (vi,1, vi,2, . . . , vi,ni , r)
of length ni for 1 ≤ i ≤ ∆. We call each Pi a leg. For simplicity, we let vi,ni+1 = r.

Here we briefly sketch the main idea of the algorithm. For a leg Pi with ni+1
vertices, the optimal cost Hs(Pi) under Hs can be obtained in O(ni) time by the



Algorithm 5: AddLeaf(G)

Input: an edge-bi-weighted graph G
Output: an edge-bi-weighted graph G′

1 For each vertex vi of degree at least two, add two vertices xi and yi to G;
2 To G, add an edge {vi, xi} with weights w(vi, xi) =∞ and w(xi, vi) = 0, and

then add an edge {vi, yi} with weights w(vi, yi) = 0 and w(yi, vi) =∞;
3 return G (as G′);

algorithm BestOrientPaths in [3]. However, just combining optimal orientations
of P1, . . . , P∆ may not give an optimal orientation for G. Instead, we proceed as
follows.

1. For each leg Pi, we obtain an orientation such that {vi,ni , r} (or {vi,ni , r})
is directed toward r (or toward vi,ni

) and any maximal di-path not in-
cluding (vi,ni

, r) (or (r, vi,ni
)) inside Pi has length at most B, utilizing

BestOrientPaths.
2. Based on these two orientations for each leg, we construct a star G′ from an

input spider G, which preserves the lengths of longest di-paths, ending at,
starting from, and passing r in G.

3. From an orientation of G′ obtained by the algorithm BestOrientStars in [3],
we construct an orientation of G.

The above procedure answers Question 1 for a fixed B in O(n + ∆ log∆)
time. Then, by utilizing the above procedure in a binary search manner on B
having O(Z) candidates, we obtain the main result of this section.

Theorem 3. Suppose that the input is a spider in which every edge weight is
an integer. Then, SLPOs can be solved in O((n+∆ log∆) logZ) time.

5 Concluding remarks

In this paper, we presented efficient algorithms for SLPOm and SLPOs on trees
and spiders. Some open questions are:

– Are faster algorithms possible? For example, linear-time algorithms to solve
SLPOm for paths, cycles, and stars are plausible targets.

– Can we remove the assumption that all edge weights are integers and Z is
sub-exponential, imposed to obtain faster algorithms for trees and spiders?

– Is it possible to design polynomial-time algorithms for other graph classes,
such as unicyclic graphs, cactus graphs, graphs with bounded treewidth?

– Is there a polynomial-time approximation algorithm for subcubic pla-
nar graphs?

– Is there any graph class, for which the (in)tractability of SLPOs differs from
SLPOm, e.g., SLPOm is polynomial-time solvable while SLPOs is NP-hard?
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