
くモデリングとシミュレーション>

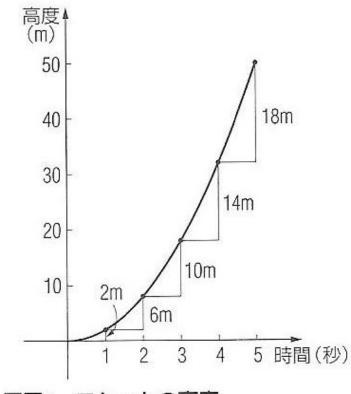
くシミュレーション>

- •モンテカルロ・シミュレーション
 - •確率的要因•••乱数発生
- 連続型シミュレーション
 - ・システムダイナミックス・・・ストックとフロー
 - •差分方程式、微分方程式
- ・離散型シミュレーション
 - •待ち行列
 - ・ネットワークモデル(PERT型)

例題3

ロケットの高度を求める

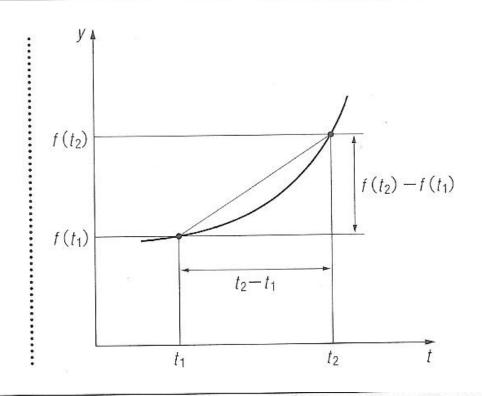
あるロケットを打ち上げたとき、ロケットの高度は時間(秒)の2乗を2倍したものであった。 1~5秒後の高度の変化を求めてみよう。


ロケットの高度は,

1 秒後には、
$$2 \times (1)^2 = 2 \text{ m}$$

2秒後には、
$$2 \times (2)^2 = 8 \text{ m}$$
 となる

時間(秒)	0	1	2	3	4	5
変化後の高度 (m)	0	2	8	18	32	50
上昇距離 (m/秒)	<u></u>		6	, <u> </u>	4	18


問3 ロケットの高度 y を, 時間 t の関数として, グラフをかきなさい。

■図6 ロケットの高度

参考にしよう 平均変化率

関数y = f(t) において、tが t_1 から t_2 に変化するときの、yの変化量 $f(t_2) - f(t_1)$ を、tの変化量 $t_2 - t_1$ で割った値 $\frac{f(t_2) - f(t_1)}{(t_2 - t_1)}$ を、tが t_1 から t_2 に変化するときのf(t)の平均変化率という。

例題4

ロケットの高度を近似的に求める

あるロケットを打ち上げたときの,1秒後ごとの高度を求めてみよう。なお,時刻0のときの高度は0であり,時間間隔 (t_2-t_1) の区間内の平均変化率は $4t_1$ で,つねに区間内の変化率が一定で上昇するものとする。

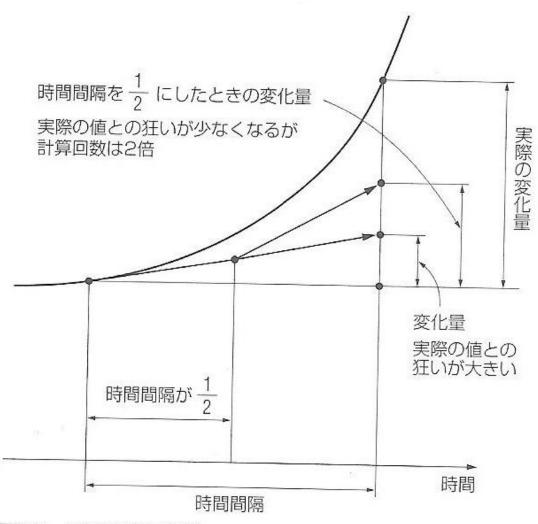
時間間隔 (t2-t1) の区間内の平均変化率は 4 t1であるので,

$$\frac{f(t_2) - f(t_1)}{(t_2 - t_1)} = 4t_1$$

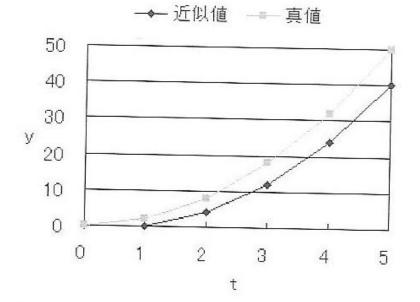
となり、この式を変形すると、 $f(t_2) = f(t_1) + (t_2 - t_1) \times 4t_1$ となる。

時間をto, t1, …, それぞれの時間に対する高度をf(to), f(t1), …, 時間間隔hを1秒とすると,

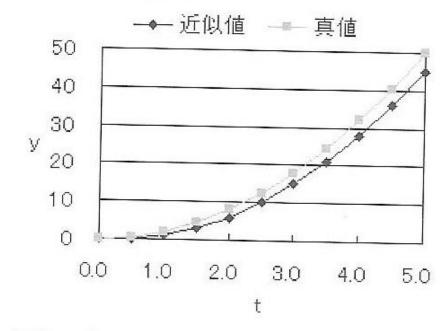
$$t_1 = t_0 + h = 0 + 1 = 1$$
 での近似値 $f(t_1)$ は,


$$f(t_1) = f(t_0) + h \times 4 \times t_0 = 0 + 1 \times 4 \times 0 = 0$$

$$t_2=t_1+h=1+1=2$$
 での近似値 $f(t_2)$ は,


$$f(t_2) = f(t_1) + h \times 4 \times t_1 = 0 + 1 \times 4 \times 1 = 4$$

$$t_3=t_2+h=2+1=3$$
 での近似値 $f(t_3)$ は,


$$f(t_3) = f(t_2) + h \times 4 \times t_2 = 4 + 1 \times 4 \times 2 = 12$$

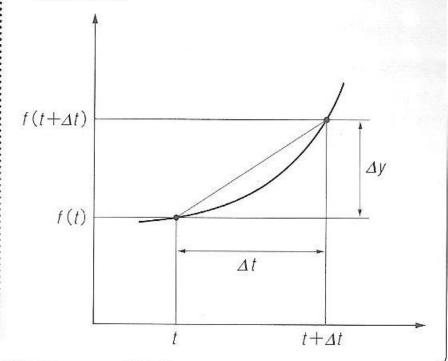
■図8 近似計算と誤差

■図7 平均変化率による近似値計算結果 (時間 間隔=1)

■図9 オイラー法による結果 (時間間隔=0.5)

参考 にしよう 差分方程式と微分方程式

平均変化率は2点の直線の傾きであり、 例題4のロケットの高度のように、最初の 高度から各時間に対する高度を近似的に求 めていくことができる。


平均変化率の時間間隔 Δ tがじゅうぶん 小さい場合、関数y=f(t)の変化を $f(t+\Delta t)$ $-f(t)=\Delta y$ とおくと、

$$\frac{f(t+\Delta t)-f(t)}{\Delta t} = \frac{\Delta y}{\Delta t} = 4t$$

であり、このような関係式を**差分方程式**という。オイラー法は、差分方程式を数値的にといていく方法である。

また、時間間隔 Δ tをかぎりなく0に近づけたとき、2点の直線の傾きは関数f(t)の接線となる。接線の傾きをf'(t)としたとき、f(t)=4t、あるいは $\frac{dy}{dt}$ =4t

のような関係式を微分方程式という。微分 方程式を近似したものが差分方程式であ る。微分方程式の数値解法には、オイラー 法やルンゲクッタ法とよばれる方法があ る。オイラー法は誤差が大きいため、精度 が求められる場合は、ルンゲクッタ法が利 用される。

乱数とシミュレーション

1 —— 一様乱数

確率的モデルの動作を調べるコンピュータシミュレーションでは、**乱数**①を使用する。乱数のなかで基本的なものは、どの数値も等しい確率で出てくる一様乱数②である ■表4 乱数表 (JIS-9031) の一部

行

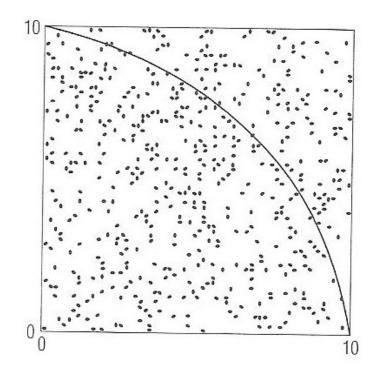
1	67	11	09	48	96	29	94	59	84	41
2	67	41	90	15	23	62	54	49	02	06
3	78	26	74	41	76	43	35	32	07	59
4	32	19	10	89	41	50	09	06	16	28
5	45	72	14	75	08	16	48	99	17	64
6	74	93	17	80	38	45	17	17	73	11
7	54	32	82	40	74	47	94	68	61	71
8	34	18	43	76	96	49	68	55	22	20
9	04	70	61	78	89	70	52	36	26	04
10	38	69	83	65	75	38	85	58	51	23

2 ―― モンテカルロ法

ここでは、乱数を用いたシミュレーションである**モンテカルロ法** の代表的な例について述べる。

例題5

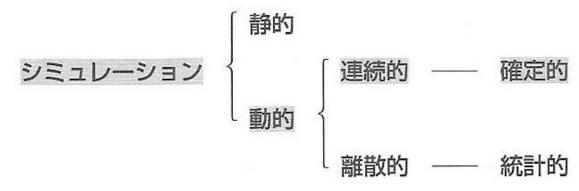
円周率を求める


一様乱数を100個発生させ、円の面積から円周率を求めてみよう。また、1000個の場合、どのようになるか調べてみよう。

一辺10cmの正方形の方眼紙を用意して,そこに黒ゴマをできるだけランダムにまいたとしよう。このとき,正方形内にある黒ゴマの数をN,また,正方形内に接する $\frac{1}{4}$ 円のなかにある黒ゴマの数をMとする。

正方形の面積は, 100 (cm²)

$$\frac{1}{4}$$
円の面積は、 $\frac{(\pi \times 10 \times 10)}{4}$ (cm²)


である。もし、黒ゴマが一様にまかれているならば、N、Mの数は、それぞれの面積に比例するので、 $\frac{M}{N}$ は $\frac{\pi}{4}$ になるはずである。これより円周率の値を求めることができる。

システムダイナミックスとは

図1に示すように、シミュレーションの型は、時間に対して静的 なものと動的なものに分類される。さらに、動的なものは連続的な ものと離散的なものに分類される。ここで、連続的とは、時間に関 して連続的に変化することをあらわし、離散的とは、1年や1か月 ごとなどの離散時間ごとにとらえることができることをあらわす。 確定的とは、条件が設定されると一意的に結果が導き出されるもの をいう。システムダイナミックスは、図1の網が掛かっている部分 の性質をもつ。

■図1 システムダイナミックスの性質

2 ストックとフローによるモデルの構成

身のまわりの自然現象や社会現象などのシステムの時間的変化 は、ストックとフローの組み合わせで表現することができる。

■表1 自然現象の例

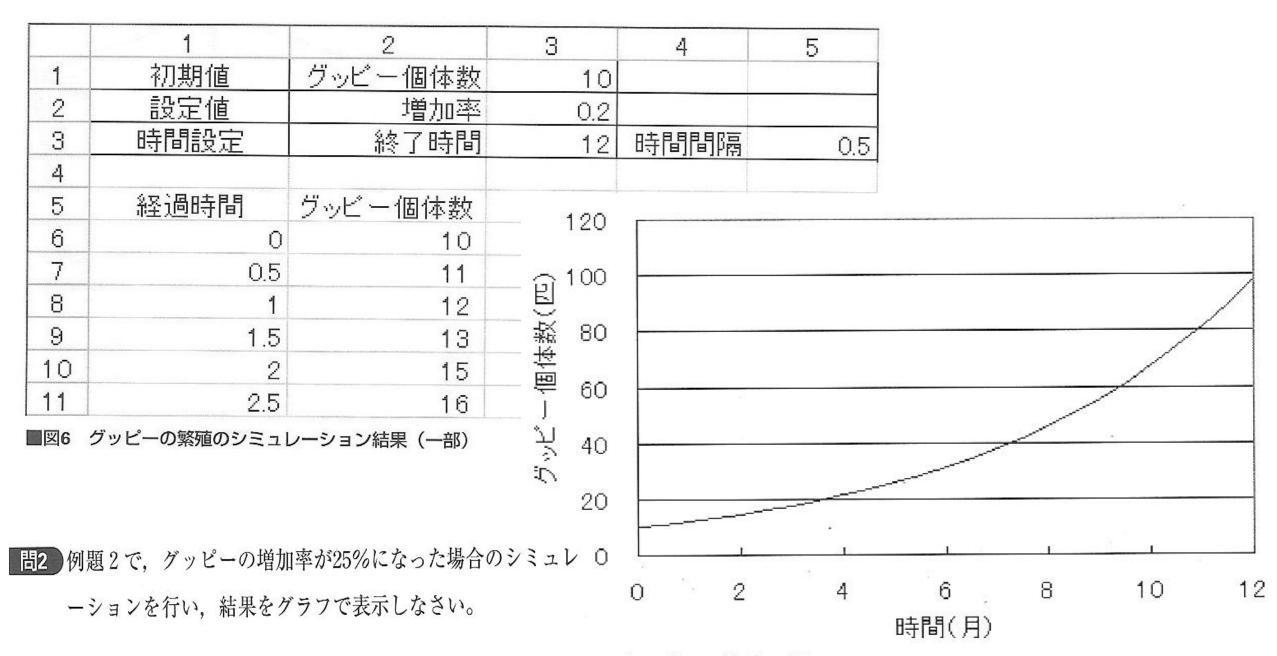
現象	インフロー①	ストック	アウトフロー(1)
生物の個体数	出生	個体数	死亡
ダムの貯水量	流入	貯水量	流出
水温の変化	加熱	水温	放熱

■表2 社会現象の例

現象	インフロー	ストック	アウトフロー
駐車場の管理	入庫	駐車台数	出庫
預金額の変化	入金	残高	出金
リサイクル	回収	保管	再生

例題2

グッピーの繁殖


水槽で10匹のグッピーを飼っている。増加率を60%,減少率を40%とし、実質増加率(増加率-減少率)を20%として考えると、1年後には何匹になっているか。ただし、餌は必要分を与えるものとし、水槽はじゅうぶんな広さがあり、飼育環境は完全なものとする。

▶ 2. 数式の作成

時間tか月後のグッピー個体数の計算式を考える。

増加速度(t)=グッピー個体数(t)×増加率

グッピー個体数 $(t+\Delta t)$ =グッピー個体数(t)+増加速度(t)× Δt

■図7 グッピーの繁殖のグラフ

ダム洪水対策問題

あるダムで、洪水期(6,7月とする)のダム管理に おける洪水対策①として放流量を決めたい。シミュレ ーションによる解決案を提案するためにモデルをつく ってみよう。なお、ダムの容量は、満水で350万m3の 大きさとする(この値を超えるとダムから水があふれ 大変危険な状態になる)。1日あたりのダムへの水の 流入量は不規則で、洪水期については表のように与え られているものとする。

1日あたりの 流入量(万m³)	確率	累積確率	
0.5	0.1	0.10	
1	0.7	0.80	
5	0.1	0.90	
10	0.07	0.97	
20	0.02	0.99	
50	0.01	1.00	

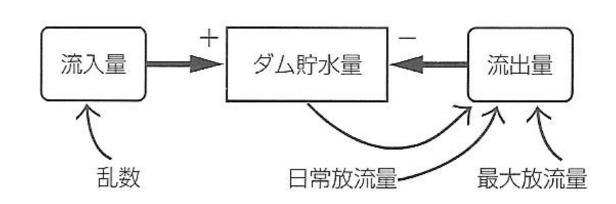
①大雨による洪水をなくすために, ダムで一時的に水をためて安全に放流すること。

▶ 1. 問題を明確化する

ときどき発生する大雨に対して、ダムから水があふれないようにする必要がある。そこで、次のように問題解決の方針を考える。ダムの貯水量が少なすぎてもよくないので、下限を280万m³とし、上限を満水より少ない340万m³として、280万から340万m³におさまるように1日あたりの「日常放流量」と「最大放流量」の値を決めることにする。また、最大放流を行うのは、ダムの貯水量が310万m³以上のときとし、貯水量が310万m³未満のときは日常放流とする。簡単にするために、水道用水などの取水、蒸発散や地下への浸透は考えないことにする。

▶ 2. モデルの構造を決定する

ダムの貯水量が蓄積量になる。


ダム貯水量の変化は流入の速さと流出の速さによって決まる。

流入の速さはダムへの1日あたりの「流入量」によって決まる。流入量は、乱数関数「RANDOM」を発生して表の確率のデータに従うようにする。

1日あたりの「流出量」がダム貯水量の流出の速さとなる。流出の速さは、1日あたりの「日

常放流量」と「最大放流量」およびダム貯水 量によって決まる。

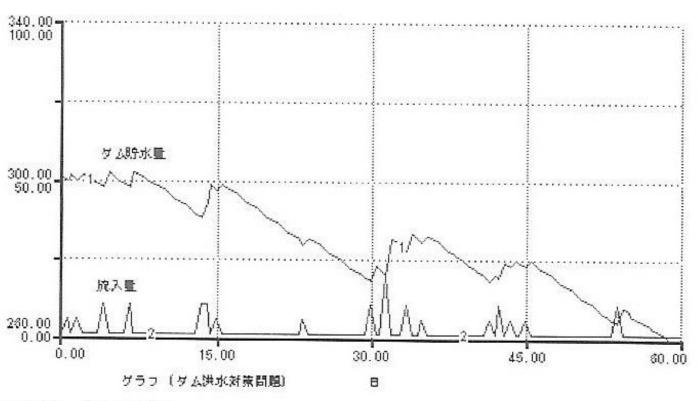
これらの因果関係図は右図のようになる。

▶ 3. モデルを数式で表現する

1日あたりの「流入量」の式は、乱数の値を累積確率の範囲に当てはめる方法を用いる。流入 (→p.48) 量の値を取り出す関数は、図3の数式表①のように与えられる。

1日あたりの「流出量」は、ダム貯水量<310のときは「日常放流量」の値、それ以外のときは「最大放流量」の値を出力する関数として数式表②のようにする。

変化後のダム貯水量は数式表③のようになる。


①流入量= if RAND<=0.1 then 0.5
else if RAND<=0.8 then 1
else if RAND<=0.9 then 5
else if RAND<=0.97 then 10
else if RAND<=0.99 then 20
else 50

- ②流出量= if(ダム貯水量<310)then 日常放流量 else 最大放流量
- ③変化後のダム貯水量=現在のダム貯水量 + (流入量-流出量)×時間間隔

■図3 数式表

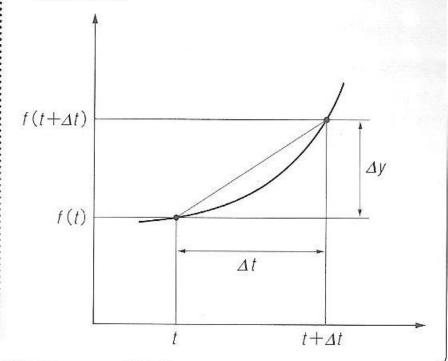
ここでは,第3章で扱うモデリングツールを使うことにする。「最大放流量」と 「日常放流量」にデータを設定してシミュレーションを行い、その結果をグラフに出

力する。図4のグラフは「日常放流量」を2(万m³/日),「最大放流量」を30(万m³/日) としたために渇水状態(280万m³を下まわっているかそれに近い値)になっているシミュレーション結果である。

■図4 渇水状態

参考 にしよう 差分方程式と微分方程式

平均変化率は2点の直線の傾きであり、 例題4のロケットの高度のように、最初の 高度から各時間に対する高度を近似的に求 めていくことができる。


平均変化率の時間間隔 Δ tがじゅうぶん 小さい場合、関数y=f(t)の変化を $f(t+\Delta t)$ $-f(t)=\Delta y$ とおくと、

$$\frac{f(t+\Delta t)-f(t)}{\Delta t} = \frac{\Delta y}{\Delta t} = 4t$$

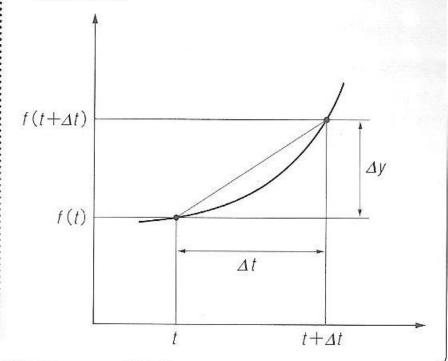
であり、このような関係式を**差分方程式**という。オイラー法は、差分方程式を数値的にといていく方法である。

また、時間間隔 Δ tをかぎりなく0に近づけたとき、2点の直線の傾きは関数f(t)の接線となる。接線の傾きをf'(t)としたとき、f(t)=4t、あるいは $\frac{dy}{dt}$ =4t

のような関係式を微分方程式という。微分 方程式を近似したものが差分方程式であ る。微分方程式の数値解法には、オイラー 法やルンゲクッタ法とよばれる方法があ る。オイラー法は誤差が大きいため、精度 が求められる場合は、ルンゲクッタ法が利 用される。

参考 にしよう 差分方程式と微分方程式

平均変化率は2点の直線の傾きであり、 例題4のロケットの高度のように、最初の 高度から各時間に対する高度を近似的に求 めていくことができる。


平均変化率の時間間隔 Δ tがじゅうぶん 小さい場合、関数y=f(t)の変化を $f(t+\Delta t)$ $-f(t)=\Delta y$ とおくと、

$$\frac{f(t+\Delta t)-f(t)}{\Delta t} = \frac{\Delta y}{\Delta t} = 4t$$

であり、このような関係式を**差分方程式**という。オイラー法は、差分方程式を数値的にといていく方法である。

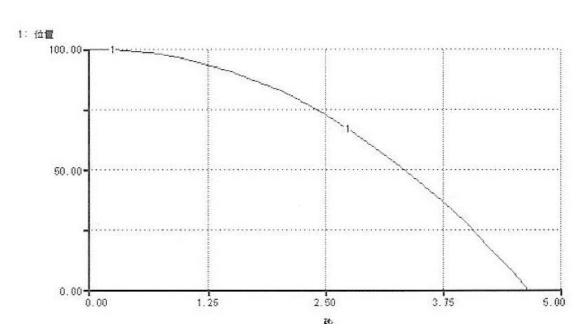
また、時間間隔 Δ tをかぎりなく0に近づけたとき、2点の直線の傾きは関数f(t)の接線となる。接線の傾きをf'(t)としたとき、f(t)=4t、あるいは $\frac{dy}{dt}$ =4t

のような関係式を微分方程式という。微分 方程式を近似したものが差分方程式であ る。微分方程式の数値解法には、オイラー 法やルンゲクッタ法とよばれる方法があ る。オイラー法は誤差が大きいため、精度 が求められる場合は、ルンゲクッタ法が利 用される。

バンジージャンプやスカイダイビングを行った場合に、足につけたゴムやパラシュートの影響 を受ける前の人が落下するようすをモデル化してみよう。

次の条件で, このモデルのシミュレーションを行う。

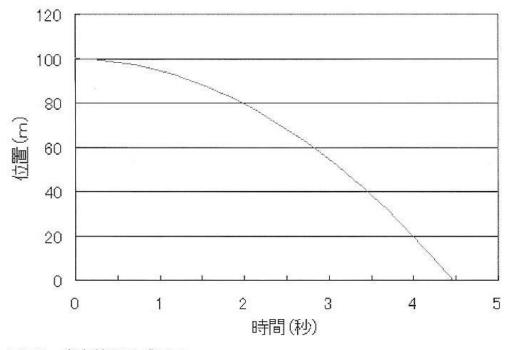
時間の単位:秒 期間:開始0秒 終了5秒


時間間隔: 0.25 計算方法: オイラー法

加速度α: -10(m/s²) 位置(高さ)y:1000(m)

速さv: $v = \alpha \times t$

$$v(t + \Delta t) = v(t) + \alpha \times \Delta t$$


$$Y(t + \Delta t) = Y(t) + v \times \Delta t$$

	1	2	3 4 3	4	5
1	初期値	位置	100	運動量	0
2	設定値	質量	5	加速度	9.8
3	時間設定	終了時間	5	時間間隔	0.1
4				200	
5	時間 t	位置		***	
6	.0	1 00.00			
7	0.1	99.90			
8	0.2	99.71			
9	0.3	99.41			
10	0.4	99.02			
11	0.5	98.53			
12	0.6	97.94			
13	0.7	97.26			
14	0.8	96.47			
15	0.9	95.59		-	
16	1	94.61		war and the same a	restablished the second se

■図7 自由落下のシミュレーション結果(一部)

■図8 自由落下のグラフ

例題3

バンジージャンプのモデルをつくる

バンジージャンプは、足につけたゴムひもがのび縮みすることにより、上下運動をくりかえす。 このようすをシミュレーションしてみよう。ただし、簡単にするため、ジャンプ台の高さからゴムひもの長さまでの自由落下については考慮しないものとする。

ジャンプ台の高さ:100 (m)

フック定数:20 (kg/s²)

台からの位置=位置-ジャンプ台の高さ

復元カ=フック定数×台からの位置

次の条件で,このモデルのシミュレーションを行う。

時間の単位:秒

期間:開始0秒 終了60秒

時間間隔:0.25

計算方法:ルンゲクッタ法

運動方程式

 $F = mg + kx = m\alpha$

 $=20x-700 = 70\alpha$

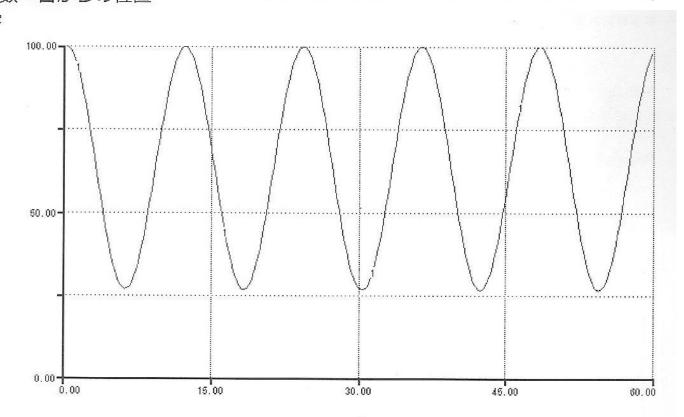
重力加速度g: -10(m/s²)

フック定数k: 20(kg/s²)

体重m: 70(kg)

加速度α

 $\alpha = 2x/7 - 10$


x = 300 - y

位置(高さ)y:300(m)

速さv:

 $v(t + \Delta t) = v(t) + \alpha \times \Delta t$

 $Y(t + \Delta t) = Y(t) + v \times \Delta t$

例題1

入園券販売窓口の待ち行列 (サービス時間が一定の場合)

ある遊園地には入園券販売窓口が1つある。客の到着間隔の状況が表1のような累積確率となっている。今後くる5人の客について、どのような待ち行列ができるか調べてみよう。なお、サービス時間は30秒で一定とする。

手順

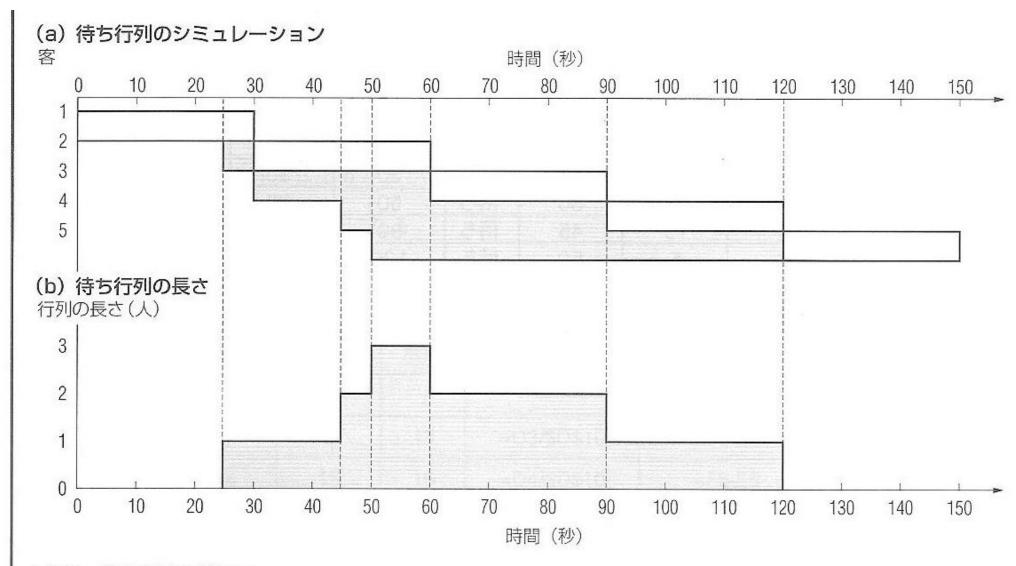
▶ 1. 考え方

過去の客50人の到着間隔は表1のとおりであり、サービス時間は30秒で一定である。

最初の客の到着時間を 0 とする。 ■表1 客の到着間隔 (過去の状況) 客2~5の到着時間は,一様乱数 の値が累積確率の範囲のどこに入 るか①を求め、到着間隔を決定す る。つまり、乱数の値と「累積確 率」列の数値を比較して, 累積確 率の数値が乱数の値より大きく最 も近い累積確率の行に着目して, その行の中央値を到着間隔とする。

The same of the sa				
到着間隔(秒)	中央値	度数	確率	累積確率
0以上10未満	5	13	0.26	0.26
10以上20未満	15	19	0.38	0.64
20以上30未満	25	9	0.18	0.82
30以上40未満	35	6	0.12	0.94
40以上50未満	45	2	0.04	0.98
50以上60未満	55	1	0.02	1.00
60以上		0	0.00	
	合計	50	1.00	

次に, 客の到着時間に窓口があいているかどうかを調べ, あいていれ ば窓口の状態を「あき」とし、そうでなければ「待ち」とする。

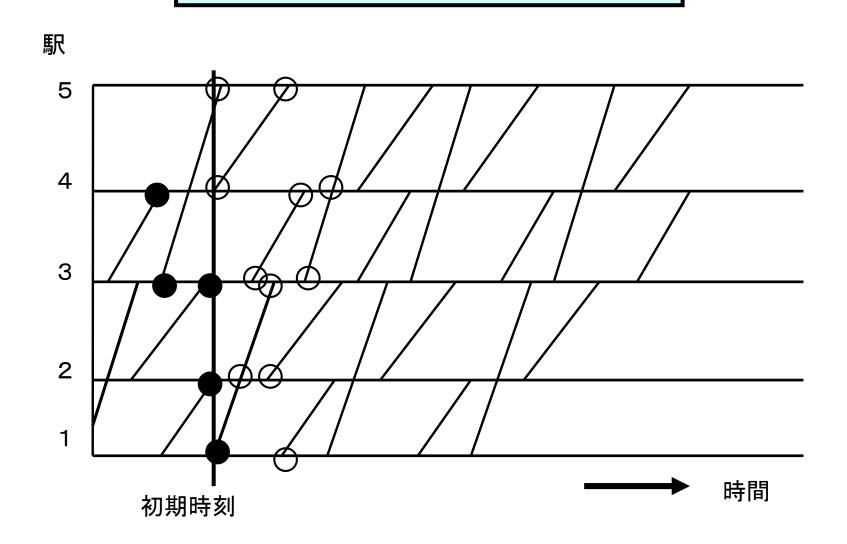

サービス開始時刻は、窓口が「あき」ならば「到着時刻」、そうでな ければ「前に並んでいる客のサービス終了時刻」とする。

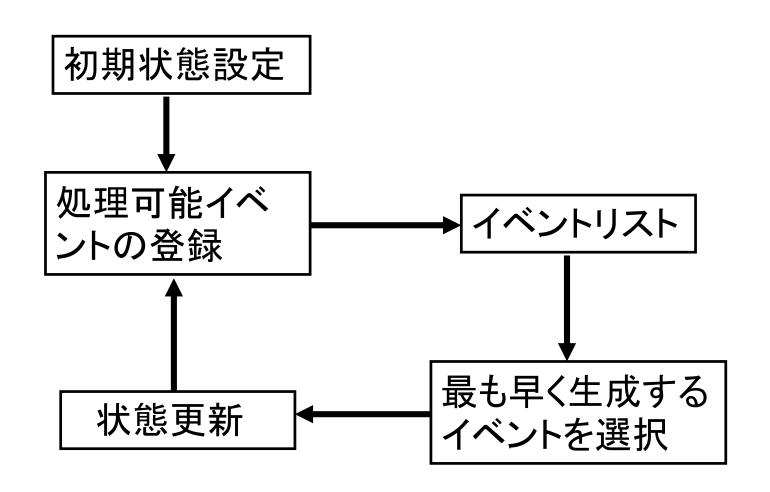
サービス終了時刻は、サービス開始時刻にサービス時間をたした値とする。

①指定したセルの値に対 応するデータを表示する LOOKUP関数を用いる ことにより、求めること ができる。

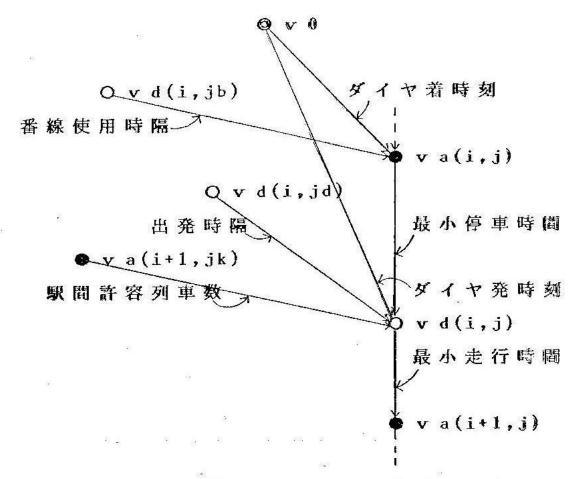
	A	В	C	D	E	F	G	EssaH ==	I TOTAL
1		到着間隔(秒)	中央値	度数	確率	累積確率			-
2						-1			
3		0以上10未満	5	13	0.26	0.26			
4		10以上20未満	15	19	0.38	0.64			
5		20以上30未満	25	9	0.18	0.82			
6		30以上40未満	35	6	0.12	0.94			
7		40以上50未満	45	2	0.04	0.98			
8		50以上60未満	55	1	0.02	1.00			
9		60以上		0	0.00				7111111
10			合計	50	1.00				
11									
						サービス	サービス	サービス	
12	客	一樣乱数	到着間隔	到着時刻	窓口	開始時刻	時間	終了時刻	待ち時間
13	1			0	あき	0	30	30	0
14	2	0.7725	25	25	待ち	30	30	60	5
15	3	0.1 078	5	30	待ち	60	30	90	30
16	4	0.4283	15	45	待ち	90	30	120	45
17	5	0.1 098	5	50	待ち	120	30	150	70
18								お時間	30

■図1 客の到着時間と窓口の状況 (今後の予想)

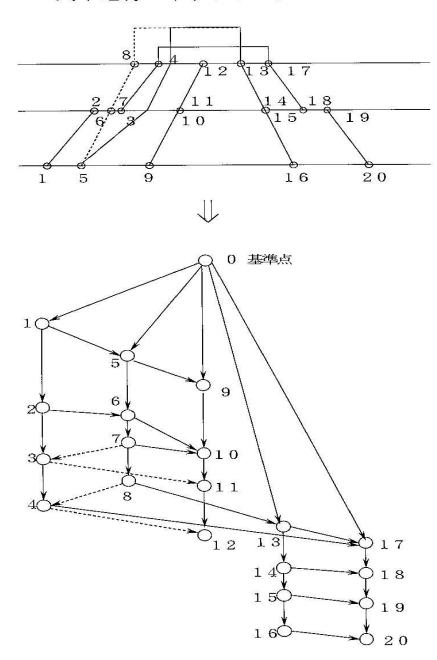

■図3 待ち行列のグラフ


列車運行シミュレーション

くシミュレーション方式>

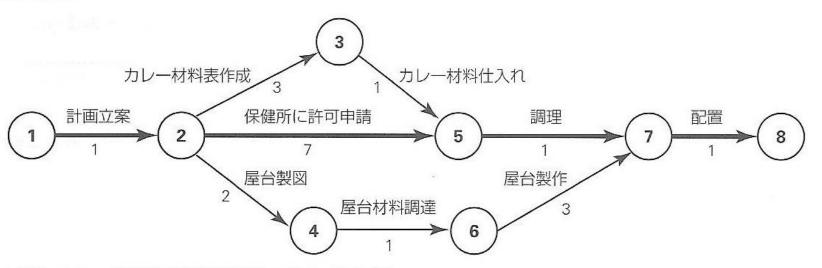

- 連続型シミュレーション 実際の列車走行
- 離散型シミュレーション
 - ー> イベントシミュレーション 列車の駅着発単位

イベントシミュレーション


列車運行のネットワークモデル

②:基準点,●:着イベント,○発イベント

図1.列車運行のネットワーク表現


列車運行のネットワークモデル

■表1 基準作業リスト

作業内容	先行作業	必要日数	必要人数
計画立案	なし	1	3
保健所に許可申請	計画立案	7	1
カレー材料表作成	計画立案	3	2
カレー材料仕入れ	材料表作成	1	2
調理	仕入れ、許可申請	1	3
配置	調理,屋台製作	1	3
屋台製図	計画立案	2	2
屋台材料調達	屋台製図	1	2
屋台製作	屋台材料調達	3	3

■図6 カレー模擬店の作業工程のネットワークモデル

ワインの保管料と送料 何カ月おきの注文が得か

フランス料理店を経営する山崎さんは、お気に入りのシャトーからワインを直輸入しようと考えています。ワインは1月に1ケース消費します。ワインの送料は、ケースの数に関わらず、1回あたり10,000円です。

ワインを保管するためのワインセラーのレンタル費用は、1ケースあたり月に1,000円です。たとえば半年おきに注文する場合、ワインセラーは6ケース分確保しておく必要があり、月に6,000円のレンタル費用が必要になります。何カ月おきに注文するのが最もお得でしょうか?

解決

注文の間隔を短くすると、セラーのレンタル費は少なくてすみますが、送料が余分にかかります。注文の間隔を長くすると、送料は少なくてすみますが、レンタル費が余分にかかります。

これをまとめたのが下の表です。費用をもっとも安くするには、3カ月に1回注 文すればいいことがわかります。これが経済的発注量(EOQ)です。

でも実際は、よく売れる月も売れない月もあるので、これよりは少し在庫を余分に持っておくのが良いでしょう。

	ワインの送料	セラーのレンタル料	合計 (円)
1カ月に1回	120,000	12,000	132,000
2カ月に1回	60,000	24,000	84,000
3カ月に1回	40,000	36,000	76,000
4カ月に1回	30,000	48,000	78,000
5カ月に1回	24,000	60,000	84,000
6カ月に1回	20,000	72,000	92,000
•••			
1年に1回	10,000	144,000	154,000

- ・経済的発注量(EOQ) 在庫費と発注費の和が最小となる ロットサイズ(一度に注文する量)
- •在庫の補充方法

発注点法:現在の在庫量を基準 定期発注法:一定日数おきに発注

- ・ABC分析 優先順位をつけて管理
- ・リードタイム ジャストインタイム、かんばん方式

くエージェントシミュレーション>

一定のルールに基づいて、自律的に 行動するエージェントの振る舞いや、 それらの相互作用から現れる、複雑 な社会現象をシミュレーションする。 私たちの生活している社会においては、例えばエージェントは「ヒト」になりますし、道路交通網においては「自動車」に対応します。これらエージェントの個々の行動や移動、振る舞い、状態変化をコンピュータ上で同時にシミュレーションする事で、エージェントが活動している社会全体の振る舞いを分析する事が出来ます。

また、エージェントシミュレーションでは、エージェントの個々の振る舞いからでは、予測できなかったような社会システムの現象も予測する事ができます。このような現象は「創発」と呼ばれます。

エージェントシミュレーションの例として、ツイッター上に新製品 発売に関する情報が広がる様子をを考えます。これをエージェ ントシミュレーションでモデル化すると、エージェントはツイッター ユーザであり、エージェントの行動は情報を目にしてツイートす る、リツーイトする、何も行動しない、とパターン化されます。 また、エージェントが活動する社会は、ユーザ間のフォロー、 フォロワー関係のネットワーク構造であり、口コミは構築されて いるユーザ同士のネットワーク上を伝播していきます。このよう にコンピュータ上で ユーザの個々の行動をシミュレーションして みると、ツイッター上で新製品に関する情報を目にするユーザ 数の推移を予測できます。

あるいは、エージェントの移動を行動ルールとしてモデル化すると、火災発生時の避難の様子などもシミュレーションする事が出来、 最適な避難経路の設計や、非常灯の配置などに役立てる事ができます。同様に、商用施設や空港、駅などの施設に適用すると、混雑緩和策の検討、施設の要員計画にも活用できます。

道路交通網においては、自動車の走行をエージェントシミュレーションする事で、渋滞緩和策として、信号制御方法や、道路建設などを検討する事が出来ます。

このように様々な場面でエージェントシミュレーションは有効ですが、利点として、エージェントの状態や 行動ルールを複雑にする事で、より現実に近いモデル化も可能となる点も挙げられます。